英文药名:Jentadueto(linagliptin and metformin hydrochloride)tablets 中文药名:利拉利汀/盐酸二甲双复方片剂 生产厂家:勃林格殷格翰/礼来
For patients not adequately controlled on metformin alone, the usual starting dose of Jentadueto should provide linagliptin dosed as 2.5 mg twice daily (5 mg total daily dose) plus the dose of metformin already being taken.
Adverse reactions reported when linagliptin and metformin were combined with sulphonylurea When linagliptin and metformin were administered in combination with a sulphonylurea, hypoglycaemia was identified as an additional adverse reaction under these conditions. Table 2 Adverse reactions additionally reported in patients when linagliptin and metformin were combined with sulphonylurea*:
None of the hypoglycaemias was classified as severe. Adverse reactions reported when linagliptin and metformin were combined with insulin When linagliptin and metformin were administered in combination with insulin, constipation was identified as an additional adverse reaction under these conditions. The combination of linagliptin and metformin when administered in combination with insulin may be associated with an increased risk of hepatic events. Table 3 Adverse reactions additionally reported in patients when linagliptin and metformin were combined with insulin*:
** This frequency is calculated from a pooled dataset of 549 patients Additional information on individual components Adverse reactions previously reported with one of the individual active substances may be potential adverse reactions with Jentadueto, even if not observed in clinical trials with this medicinal product. Linagliptin: All identified adverse reactions of linagliptin monotherapy are also described for Jentadueto in Table 1. Metformin: Known adverse reactions for metformin, that were not reported in patients who received Jentadueto are listed in Table 4. Table 4 Adverse reactions reported in patients who received metformin* as monotherapy and that were not observed in patients receiving Jentadueto
Description of selected adverse reactions Gastrointestinal disorders such as, nausea, vomiting, diarrhoea and decreased appetite (Table 1) and abdominal pain (Table 3) occur most frequently during initiation of therapy with Jentadueto or metformin hydrochloride and resolve spontaneously in most cases. For prevention, it is recommended that Jentadueto be taken in 2 daily doses during or after meals. A slow increase of the dose may also improve gastrointestinal tolerability. Long-term treatment with metformin has been associated with a decrease in vitamin B12 absorption (table 3) which may very rarely result in clinically significant vitamin B12 deficiency (e.g. megaloblastic anaemia). Reporting of suspected adverse reactions Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via: United Kingdom Yellow Card Scheme Website: www.mhra.gov.uk/yellowcard Ireland Pharmacovigilance Section Irish Medicines Board Kevin O'Malley House Earlsfort Centre Earlsfort Terrace Dublin 2 Ireland Tel: +353 1 6764971 Fax: +353 1 6762517 Website: www.imb.ie e-mail: imbpharmacovigilance@imb.ie Malta ADR Reporting The Medicines Authority Post-Licensing Directorate 203 Level 3, Rue D'Argens GŻR-1368 Gżira Website: www.medicinesauthority.gov.mt e-mail: postlicensing.medicinesauthority@gov.mt 4.9 Overdose No data are available with regard to overdose of Jentadueto. Linagliptin During controlled clinical trials in healthy subjects, single doses of up to 600 mg linagliptin (equivalent to 120 times the recommended dose) were not associated with a dose dependent increase in adverse events. There is no experience with doses above 600 mg in humans. Metformin Hypoglycaemia has not been seen with metformin hydrochloride doses of up to 85 g, although lactic acidosis has occurred in such circumstances. High overdose of metformin hydrochloride or concomitant risks may lead to lactic acidosis. Lactic acidosis is a medical emergency and must be treated in hospital. The most effective method to remove lactate and metformin hydrochloride is haemodialysis. Management In the event of an overdose, it is reasonable to employ the usual supportive measures, e.g. remove unabsorbed material from the gastrointestinal tract, employ clinical monitoring, and institute clinical measures if required. 5. Pharmacological properties 5.1 Pharmacodynamic properties Pharmacotherapeutic group: Drugs used in diabetes, combinations of oral blood glucose lowering drugs, ATC code: A10BD11. Mechanism of action and pharmacodynamic effects Jentadueto combines two antihyperglycaemic medicinal products with complementary mechanisms of action to improve glycaemic control in patients with type 2 diabetes: linagliptin, a dipeptidyl peptidase 4 (DPP-4) inhibitor, and metformin hydrochloride, a member of the biguanide class. Linagliptin Linagliptin is an inhibitor of the enzyme DPP-4 (Dipeptidyl peptidase 4) an enzyme which is involved in the inactivation of the incretin hormones GLP-1 and GIP (glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide). These hormones are rapidly degraded by the enzyme DPP-4. Both incretin hormones are involved in the physiological regulation of glucose homeostasis. Incretins are secreted at a low basal level throughout the day and levels rise immediately after meal intake. GLP-1 and GIP increase insulin biosynthesis and secretion from pancreatic beta cells in the presence of normal and elevated blood glucose levels. Furthermore GLP-1 also reduces glucagon secretion from pancreatic alpha cells, resulting in a reduction in hepatic glucose output. Linagliptin binds very effectively to DPP-4 in a reversible manner and thus leads to a sustained increase and a prolongation of active incretin levels. Linagliptin glucose-dependently increases insulin secretion and lowers glucagon secretion thus resulting in an overall improvement in the glucose homeostasis. Linagliptin binds selectively to DPP-4 and exhibits a > 10,000 fold selectivity versus DPP-8 or DPP-9 activity in vitro. Metformin Metformin hydrochloride is a biguanide with antihyperglycaemic effects, lowering both basal and postprandial plasma glucose. It does not stimulate insulin secretion and therefore does not produce hypoglycaemia. Metformin hydrochloride may act via 3 mechanisms: (1) reduction of hepatic glucose production by inhibiting gluconeogenesis and glycogenolysis, (2) in muscle, by increasing insulin sensitivity, improving peripheral glucose uptake and utilization, (3) and delay of intestinal glucose absorption. Metformin hydrochloride stimulates intracellular glycogen synthesis by acting on glycogen synthase. Metformin hydrochloride increases the transport capacity of all types of membrane glucose transporters (GLUTs) known to date. In humans, independently of its action on glycaemia, metformin hydrochloride has favourable effects on lipid metabolism. This has been shown at therapeutic doses in controlled, medium-term or long-term clinical studies: metformin hydrochloride reduces total cholesterol, LDL cholesterol and triglyceride levels. Clinical efficacy and safety Linagliptin as add-on to metformin therapy The efficacy and safety of linagliptin in combination with metformin in patients with insufficient glycaemic control on metformin monotherapy was evaluated in a double-blind placebo-controlled study of 24 weeks duration. Linagliptin added to metformin provided significant improvements in HbA1c, (-0.64% change compared to placebo), from a mean baseline HbA1c of 8%. Linagliptin also showed significant improvements in fasting plasma glucose (FPG) by -21.1 mg/dl and 2-hour post-prandial glucose (PPG) by -67.1 mg/dl compared to placebo, as well as a greater portion of patients achieving a target HbA1c of < 7.0% (28.3% on linagliptin versus 11.4% on placebo). The observed incidence of hypoglycaemia in patients treated with linagliptin was similar to placebo. Body weight did not differ significantly between the groups. In a 24-week placebo-controlled factorial study of initial therapy, linagliptin 2.5 mg twice daily in combination with metformin (500 mg or 1,000 mg twice daily) provided significant improvements in glycemic parameters compared with either monotherapy as summarised in Table 5 (mean baseline HbA1c 8.65%). Table 5: Glycemic Parameters at Final Visit (24-Week Study) for Linagliptin and Metformin, Alone and in Combination in Patients with Type 2 Diabetes Mellitus Inadequately Controlled on Diet and Exercise
Mean reductions from baseline in HbA1c were generally greater for patients with higher baseline HbA1c values. Effects on plasma lipids were generally neutral. The decrease in body weight with the combination of linagliptin and metformin was similar to that observed for metformin alone or placebo; there was no change in weight from baseline for patients on linagliptin alone. The incidence of hypoglycaemia was similar across treatment groups (placebo 1.4%, linagliptin 5 mg 0%, metformin 2.1%, and linagliptin 2.5 mg plus metformin twice daily 1.4%). The efficacy and safety of linagliptin 2.5 mg twice daily versus 5 mg once daily in combination with metformin in patients with insufficient glycaemic control on metformin monotherapy was evaluated in a double-blind placebo-controlled study of 12 weeks duration. Linagliptin 5 mg once daily and 2.5 mg twice daily provided comparable (CI: -0.07; 0.19) significant HbA1c reductions of -0.80% (from baseline 7.98%), and -0.74% (from baseline 7.96%) compared to placebo. The observed incidence of hypoglycaemia in patients treated with linagliptin was similar to placebo. Body weight did not differ significantly between the groups. Linagliptin as add-on to a combination of metformin and sulphonylurea therapy A placebo-controlled study of 24 weeks in duration was conducted to evaluate the efficacy and safety of linagliptin 5 mg to placebo, in patients not sufficiently treated with a combination with metformin and a sulphonylurea. Linagliptin provided significant improvements in HbA1c (-0.62% change compared to placebo), from a mean baseline HbA1c of 8.14%. Linagliptin also showed significant improvements in patients achieving a target HbA1c of < 7.0% (31.2% on linagliptin versus 9.2% on placebo), and also for fasting plasma glucose (FPG) with -12.7 mg/dl reduction compared to placebo. Body weight did not differ significantly between the groups. Linagliptin in combination with metformin and insulin A 24-week placebo-controlled study was conducted to evaluate the efficacy and safety of linagliptin (5 mg once daily) added to insulin with or without metformin. 83% of patients were taking metformin in combination with insulin in this trial. Linagliptin in combination with metformin plus insulin provided significant improvements in HbA1c in this subgroup with -0.68% (CI: -0.78; -0,57) adjusted mean change from baseline (mean baseline HbA1c 8.28%) compared to placebo in combination with metformin plus insulin. There was no meaningful change from baseline in body weight in either group. Linagliptin 24 month data, as add-on to metformin in comparison with glimepiride In a study comparing the efficacy and safety of the addition of linagliptin 5 mg or glimepiride (mean dose 3 mg) in patients with inadequate glycaemic control on metformin monotherapy, mean reductions in HbA1c were -0.16% with linagliptin (mean baseline HbA1c 7.69%) and -0.36% with glimepiride (mean baseline HbA1c 7.69%.) with a mean treatment difference of 0.20% (97.5% CI: 0.09, 0.299). The incidence of hypoglycaemia in the linagliptin group (7.5%) was significantly lower than that in the glimepiride group (36.1%). Patients treated with linagliptin exhibited a significant mean decrease from baseline in body weight compared to a significant weight gain in patients administered glimepiride (-1.39 versus +1.29 kg). Linagliptin as add-on therapy in older people (age ≥ 70 years) with type 2 diabetes The efficacy and safety of linagliptin in older people (age ≥ 70years) with type 2 diabetes was evaluated in a double-blind study of 24 weeks duration. Patients received metformin and/or sulphonylurea and/or insulin as background therapy. Doses of background antidiabetic medications were kept stable during the first 12 weeks, after which adjustments were permitted. Linagliptin provided significant improvements in HbA1c (-0.64% change compared to placebo after 24 weeks), from a mean baseline HbA1c of 7.8%. Linagliptin also showed significant improvements in fasting plasma glucose (FPG) compared to placebo. Body weight did not differ significantly between the groups. In a pooled analysis of elderly (age ≥ 70 years) patients with type 2 diabetes (n=183) who were taking both metformin and basal insulin as background therapy, linagliptin in combination with metformin plus insulin provided significant improvements in HbA1c parameters with -0.81% (CI: -1.01; -0.61) adjusted mean change from baseline (mean baseline HbA1c 8.13%) compared to placebo in combination with metformin plus insulin. Cardiovascular risk In a prospective meta-analysis of independently adjudicated cardiovascular events from 19 clinical studies (ranging from 18 weeks to 24 months duration) involving 9459 patients with type 2 diabetes, linagliptin treatment was not associated with an increase in cardiovascular risk. The primary endpoint, the composite of the occurrence or time to first occurrence of CV death, non-fatal myocardial infarction, non-fatal stroke or hospitalization for unstable angina, was non-significantly lower for linagliptin versus combined active and placebo comparators [Hazard ratio 0.78 (95% confidence interval 0.55;1.12)]. In total there were 60 primary events on linagliptin and 62 on comparators. To date there is no evidence for an increased CV risk but the number of events in the clinical studies precludes firm conclusions. However, cardiovascular events were similar between linagliptin and placebo (1.03% with linagliptin versus 1.35% with placebo). Metformin The prospective randomised (UKPDS) study has established the long-term benefit of intensive blood glucose control in type 2 diabetes. Analysis of the results for overweight patients treated with metformin after failure of diet alone showed: • a significant reduction of the absolute risk of any diabetes-related complication in the metformin group (29.8 events/1,000 patient-years) versus diet alone (43.3 events/1,000 patient-years), p=0.0023, and versus the combined sulphonylurea and insulin monotherapy groups (40.1 events/1,000 patient-years), p=0.0034, • a significant reduction of the absolute risk of any diabetes-related mortality: metformin 7.5 events/1,000 patient-years, diet alone 12.7 events/1,000 patient-years, p=0.017, • a significant reduction of the absolute risk of overall mortality: metformin 13.5 events/1,000 patient-years versus diet alone 20.6 events/1,000 patient-years, (p=0.011), and versus the combined sulphonylurea and insulin monotherapy groups 18.9 events/1,000 patient-years (p=0.021), • a significant reduction in the absolute risk of myocardial infarction: metformin 11 events/1,000 patient-years, diet alone 18 events/1,000 patient-years, (p=0.01). Paediatric population The European Medicines Agency has waived the obligation to submit the results of the studies with Jentadueto in all subsets of the paediatric population in type 2 diabetes (see section 4.2 for information on paediatric use). 5.2 Pharmacokinetic properties Jentadueto Bioequivalence studies in healthy subjects demonstrated that the Jentadueto (linagliptin/metformin hydrochloride) combination tablets are bioequivalent to co-administration of linagliptin and metformin hydrochloride as individual tablets. Administration of Jentadueto 2.5/1,000 mg with food resulted in no change in overall exposure of linagliptin. With metformin there was no change in AUC, however mean peak serum concentration of metformin was decreased by 18% when administered with food. A delayed time to peak serum concentrations by 2 hours was observed for metformin under fed conditions. These changes are not likely to be clinically meaningful. The following statements reflect the pharmacokinetic properties of the individual active substances of Jentadueto Linagliptin: The pharmacokinetics of linagliptin has been extensively characterised in healthy subjects and patients with type 2 diabetes. After oral administration of a 5 mg dose to healthy volunteers or patients, linagliptin was rapidly absorbed, with peak plasma concentrations (median Tmax) occurring 1.5 hours post-dose. Plasma concentrations of linagliptin decline in a triphasic manner with a long terminal half-life (terminal half-life for linagliptin more than 100 hours), that is mostly related to the saturable, tight binding of linagliptin to DPP-4 and does not contribute to the accumulation of the drug. The effective half-life for accumulation of linagliptin, as determined from oral administration of multiple doses of 5 mg linagliptin, is approximately 12 hours. After once daily dosing of 5 mg linagliptin, steady-state plasma concentrations are reached by the third dose. Plasma AUC of linagliptin increased approximately 33% following 5 mg doses at steady-state compared to the first dose. The intra-subject and inter-subject coefficients of variation for linagliptin AUC were small (12.6% and 28.5%, respectively). Due to the concentration dependent binding of linagliptin to DPP-IV, the pharmacokinetics of linagliptin based on total exposure is not linear; indeed total plasma AUC of linagliptin increased in a less than dose-proportional manner, while unbound AUC increases in a roughly dose-proportional manner. The pharmacokinetics of linagliptin was generally similar in healthy subjects and in patients with type 2 diabetes. Absorption The absolute bioavailability of linagliptin is approximately 30%. Co-administration of a high-fat meal with linagliptin prolonged the time to reach Cmax by 2 hours and lowered Cmax by 15%, but no influence on AUC 0-72h was observed. No clinically relevant effect of Cmax and Tmax changes is expected; thereforelinagliptin may be administered with or without food. Distribution As a result of tissue binding, the mean apparent volume of distribution at steady-state following a single 5 mg intravenous dose of linagliptin to healthy subjects is approximately 1110 litres, indicating that linagliptin extensively distributes to the tissues. Plasma protein binding of linagliptin is concentration-dependent, decreasing from about 99% at 1 nmol/l to 75-89% at ≥ 30 nmol/l, reflecting saturation of binding to DPP-4 with increasing concentration of linagliptin At high concentrations, where DPP-4 is fully saturated, 70-80% of linagliptin was bound to other plasma proteins than DPP-4, hence 30-20% were unbound in plasma. Biotransformation Following a [14C] linagliptin oral 10 mg dose, approximately 5% of the radioactivity was excreted in urine. Metabolism plays a subordinate role in the elimination of linagliptin. One main metabolite with a relative exposure of 13.3% of linagliptin at steady-state was detected which was found to be pharmacologically inactive, and thus does not contribute to the plasma DPP-4 inhibitory activity of linagliptin. Elimination Following administration of an oral [14C] linagliptin dose to healthy subjects, approximately 85% of the administered radioactivity was eliminated in faeces (80%) or urine (5%) within 4 days of dosing. Renal clearance at steady state was approximately 70 ml/min. Special populations Renal impairment Under steady-state conditions, linagliptin exposure in patients with mild renal impairment was comparable to healthy subjects. In moderate renal impairment, a moderate increase in exposure of about 1.7 fold was observed compared with control. Exposure in T2DM patients with severe RI was increased by about 1.4 fold compared to T2DM patients with normal renal function. Steady-state predictions for AUC of linagliptin in patients with ESRD indicated comparable exposure to that of patients with moderate or severe renal impairment. In addition, linagliptin is not expected to be eliminated to a therapeutically significant degree by hemodialysis or peritoneal dialysis. No dose adjustment of linagliptin is recommended in patients with renal impairment; therefore, linagliptin may be continued as a single entity tablet at the same total daily dose of 5 mg if Jentadueto is discontinued due to evidence of renal impairment. Hepatic impairment In patients with mild moderate and severe hepatic impairment (according to the Child-Pugh classification), mean AUC and Cmax of linagliptin were similar to healthy matched controls following administration of multiple 5 mg doses of linagliptin. Body Mass Index (BMI) Body mass index had no clinically relevant effect on the pharmacokinetics of linagliptin based on a population pharmacokinetic analysis of Phase I and Phase II data. The clinical trials before marketing authorization have been performed up to a BMI equal to 40 kg/m2. Gender Gender had no clinically relevant effect on the pharmacokinetics of linagliptin based on a population pharmacokinetic analysis of Phase I and Phase II data. Older people Age did not have a clinically relevant impact on the pharmacokinetics of linagliptin based on a population pharmacokinetic analysis of Phase I and Phase II data. Older subjects (65 to 80 years, oldest patient was 78 years) had comparable plasma concentrations of linagliptin compared to younger subjects. Linagliptin trough concentrations were also measured in older people (age ≥ 70 years) with type 2 diabetes in a phase III study of 24 weeks duration. Linagliptin concentrations in this study were within the range of values previously observed in younger type 2 diabetes patients. Paediatric population Studies characterizing the pharmacokinetics of linagliptin in paediatric patients have not been yet performed. Race Race had no obvious effect on the plasma concentrations of linagliptin based on a composite analysis of available pharmacokinetic data, including patients of Caucasian, Hispanic, African, and Asian origin. In addition the pharmacokinetic characteristics of linagliptin were found to be similar in dedicated phase I studies in Japanese, Chinese and Caucasian healthy subjects and African American type 2 diabetes patients. Metformin: Absorption After an oral dose of metformin, Tmax is reached in 2.5 hours. Absolute bioavailability of a 500 mg or 850 mg metformin hydrochloride tablet is approximately 50-60% in healthy subjects. After an oral dose, the non-absorbed fraction recovered in faeces was 20-30%. After oral administration, metformin hydrochloride absorption is saturable and incomplete. It is assumed that the pharmacokinetics of metformin hydrochloride absorption are non-linear. At the recommended metformin hydrochloride doses and dosing schedules, steady-state plasma concentrations are reached within 24 to 48 hours and are generally less than 1 microgram/ml. In controlled clinical trials, maximum metformin hydrochloride plasma levels (Cmax) did not exceed 5 microgram/ml, even at maximum doses. Food decreases the extent and slightly delays the absorption of metformin hydrochloride. Following administration of a dose of 850 mg, a 40% lower plasma peak concentration, a 25% decrease in AUC (area under the curve) and a 35 minute prolongation of the time to peak plasma concentration were observed. The clinical relevance of these decreases is unknown. Distribution Plasma protein binding is negligible. Metformin hydrochloride partitions into erythrocytes. The blood peak is lower than the plasma peak and appears at approximately the same time. The red blood cells most likely represent a secondary compartment of distribution. The mean volume of distribution (Vd) ranged between 63-276 l. Biotransformation Metformin hydrochloride is excreted unchanged in the urine. No metabolites have been identified in humans. Elimination Renal clearance of metformin hydrochloride is > 400 ml/min, indicating that metformin hydrochloride is eliminated by glomerular filtration and tubular secretion. Following an oral dose, the apparent terminal elimination half-life is approximately 6.5 hours. When renal function is impaired, renal clearance is decreased in proportion to that of creatinine and thus the elimination half-life is prolonged, leading to increased levels of metformin hydrochloride in plasma. Special populations Paediatric population Single dose study: after single doses of metformin hydrochloride 500 mg, paediatric patients have shown a similar pharmacokinetic profile to that observed in healthy adults. Multiple-dose study: data are restricted to one study. After repeated doses of 500 mg twice daily for 7 days in paediatric patients the peak plasma concentration (Cmax) and systemic exposure (AUC0-t) were reduced by approximately 33% and 40%, respectively compared to diabetic adults who received repeated doses of 500 mg twice daily for 14 days. As the dose is individually titrated based on glycaemic control, this is of limited clinical relevance. 5.3 Preclinical safety data Linagliptin plus metformin General toxicity studies in rats for up to 13 weeks were performed with the co-administration of linagliptin and metformin. The only observed interaction between linagliptin and metformin was a reduction of body weight gain. No other additive toxicity caused by the combination of linagliptin and metformin was observed at AUC exposure levels up to 2 and 23 times human exposure, respectively. An embryofetal development study in pregnant rats did not indicate a teratogenic effect attributed to the co-administration of linagliptin and metformin at AUC exposure levels up to 4 and 30 times human exposure, respectively. Linagliptin Liver, kidneys and gastrointestinal tract are the principal target organs of toxicity in mice and rats at repeat doses of linagliptin of more than 300 times the human exposure. In rats, effects on reproductive organs, thyroid and the lymphoid organs were seen at more than 1500 times human exposure. Strong pseudo-allergic reactions were observed in dogs at medium doses, secondarily causing cardiovascular changes, which were considered dog-specific. Liver, kidneys, stomach, reproductive organs, thymus, spleen, and lymph nodes were target organs of toxicity in Cynomolgus monkeys at more than 450 times human exposure. At more than 100 times human exposure, irritation of the stomach was the major finding in these monkeys. Linagliptin and its main metabolite did not show a genotoxic potential. Oral 2 year carcinogenicity studies in rats and mice revealed no evidence of carcinogenicity in rats or male mice. A significantly higher incidence of malignant lymphomas only in female mice at the highest dose (> 200 times human exposure) is not considered relevant for humans (explanation: non-treatment related but due to highly variable background incidence). Based on these studies there is no concern for carcinogenicity in humans. The NOAEL for fertility, early embryonic development and teratogenicity in rats was set at > 900 times the human exposure. The NOAEL for maternal-, embryo-fetal-, and offspring toxicity in rats was 49 times human exposure. No teratogenic effects were observed in rabbits at > 1,000 times human exposure. A NOAEL of 78 times human exposure was derived for embryo-fetal toxicity in rabbits, and for maternal toxicity the NOAEL was 2.1 times human exposure. Therefore, it is considered unlikely that linagliptin affects reproduction at therapeutic exposures in humans. Metformin Preclinical data for metformin reveal no special hazard for humans based on conventional studies of safety pharmacology, repeated dose toxicity, genotoxicity, carcinogenic potential or reproductive toxicity. 6. Pharmaceutical particulars 6.1 List of excipients Tablet core Arginine Copovidone Magnesium stearate Maize starch Silica, colloidal anhydrous Film coating Hypromellose Titanium dioxide (E171) Talc Iron oxide, red (E172) Propylene glycol 6.2 Incompatibilities Not applicable. 6.3 Shelf life 3 years. 6.4 Special precautions for storage This medicinal product does not require any special temperature storage conditions. Blister Store in the original package in order to protect from moisture. Bottle Keep the bottle tightly closed in order to protect from moisture. 6.5 Nature and contents of container Pack sizes of 10 x 1, 14 x 1, 28 x 1, 30 x 1, 56 x 1, 60 x 1, 84 x 1, 90 x 1, 98 x 1, 100 x 1 and 120 x 1 film-coated tablets and multipacks containing 120 (2 packs of 60 x 1), 180 (2 packs of 90 x 1) and 200 (2 packs of 100 x 1) film-coated tablets in aluminium lidding foil and PVC/polychlorotrifluoro ethylene/PVC based forming foil perforated unit dose blisters. HDPE bottle with plastic screw cap and a silica gel desiccant. Pack sizes of 14, 60 and 180 film-coated tablets. Not all pack sizes may be marketed. 6.6 Special precautions for disposal and other handling Any unused medicinal product or waste material should be disposed of in accordance with local requirements. 7. Marketing authorisation holder Boehringer Ingelheim International GmbH, Binger Str. 173, D-55216 Ingelheim am Rhein, Germany. 8. Marketing authorisation number(s) EU/1/12/780/015 (10 x 1 film-coated tablets) EU/1/12/780/016 (14 x 1 film-coated tablets) EU/1/12/780/017 (28 x 1 film-coated tablets) EU/1/12/780/018 (30 x 1 film-coated tablets) EU/1/12/780/019 (56 x 1 film-coated tablets) EU/1/12/780/020 (60 x 1 film-coated tablets) EU/1/12/780/021 (84 x 1 film-coated tablets) EU/1/12/780/022 (90 x 1 film-coated tablets) EU/1/12/780/023 (98 x 1 film-coated tablets) EU/1/12/780/024 (100 x 1 film-coated tablets) EU/1/12/780/025 (120 x 1 film-coated tablets) EU/1/12/780/026 (14 film-coated tablets, bottle) EU/1/12/780/027 (60 film-coated tablets, bottle) EU/1/12/780/028 (180 film-coated tablets, bottle) EU/1/12/780/032 (120 (2 x 60 x 1) film-coated tablets) EU/1/12/780/033 (180 (2 x 90 x 1) film-coated tablets) EU/1/12/780/034 (200 ( 2 x 100 x 1) film-coated tablets) 9. Date of first authorisation/renewal of the authorisation Date of first authorisation: 20 July 2012 10. Date of revision of the text 01/2014 Detailed information on this medicinal product is available on the website of the European Medicines Agency http://www.ema.europa.eu/. |
Jentadueto(利拉利汀/盐酸二甲双复方片剂)简介:
英文药名:Jentadueto(linagliptin and metformin hydrochloride)tablets
中文药名:利拉利汀/盐酸二甲双复方片剂
生产厂家:勃林格殷格翰/礼来药品介绍Jentadueto®(linagliptin的和盐酸二甲双胍 ... 责任编辑:admin |
最新文章更多推荐文章更多热点文章更多
|