—新型降糖药物-SGLT-2抑制剂/DPP-4抑制剂的复合制剂Glyxambi(empagliflozin+ Linagliptin)获美国FDA批准上市
Empagliflozin Adverse reactions that occurred in ≥2% of patients receiving empagliflozin and more commonly than in patients given placebo included (10 mg, 25 mg, and placebo): urinary tract infection (9.3%, 7.6%, and 7.6%), female genital mycotic infections (5.4%, 6.4%, and 1.5%), upper respiratory tract infection (3.1%, 4.0%, and 3.8%), increased urination (3.4%, 3.2%, and 1.0%), dyslipidemia (3.9%, 2.9%, and 3.4%), arthralgia (2.4%, 2.3%, and 2.2%), male genital mycotic infections (3.1%, 1.6%, and 0.4%), and nausea (2.3%, 1.1%, and 1.4%). Empagliflozin causes an osmotic diuresis, which may lead to intravascular volume contraction and adverse reactions related to volume depletion. Linagliptin Adverse reactions reported in ≥2% of patients treated with linagliptin 5 mg and more commonly than in patients treated with placebo included: nasopharyngitis (7.0% and 6.1%), diarrhea (3.3% and 3.0%), and cough (2.1% and 1.4%). Other adverse reactions reported in clinical studies with treatment of linagliptin monotherapy were hypersensitivity (e.g., urticaria, angioedema, localized skin exfoliation, or bronchial hyperreactivity) and myalgia. In the clinical trial program, pancreatitis was reported in 15.2 cases per 10,000 patient year exposure while being treated with linagliptin compared with 3.7 cases per 10,000 patient year exposure while being treated with comparator (placebo and active comparator, sulfonylurea). Three additional cases of pancreatitis were reported following the last administered dose of linagliptin. Hypoglycemia Table 2 summarizes the reports of hypoglycemia with empagliflozin and linagliptin over a treatment period of 52 weeks. Table 2 Incidence of Overalla and Severeb Hypoglycemic Adverse Reactions
bSevere hypoglycemic events: requiring assistance regardless of blood glucose Laboratory Tests Empagliflozin and Linagliptin Changes in laboratory findings in patients treated with the combination of empagliflozin and linagliptin included increases in cholesterol and hematocrit compared to baseline. Empagliflozin Increase in Low-Density Lipoprotein Cholesterol (LDL-C): Dose-related increases in low-density lipoprotein cholesterol (LDL-C) were observed in patients treated with empagliflozin. LDL-C increased by 2.3%, 4.6%, and 6.5% in patients treated with placebo, empagliflozin 10 mg, and empagliflozin 25 mg, respectively [see Warnings and Precautions (5.9)]. The range of mean baseline LDL-C levels was 90.3 to 90.6 mg/dL across treatment groups. Increase in Hematocrit: Median hematocrit decreased by 1.3% in placebo and increased by 2.8% in empagliflozin 10 mg and 2.8% in empagliflozin 25 mg treated patients. At the end of treatment, 0.6%, 2.7%, and 3.5% of patients with hematocrits initially within the reference range had values above the upper limit of the reference range with placebo, empagliflozin 10 mg, and empagliflozin 25 mg, respectively. Linagliptin Changes in laboratory values that occurred more frequently in the linagliptin group and ≥1% more than in the placebo group were increases in uric acid (1.3% in the placebo group, 2.7% in the linagliptin group). 6.2 Postmarketing Experience Additional adverse reactions have been identified during postapproval use of linagliptin and empagliflozin. Because these reactions are reported voluntarily from a population of uncertain size, it is generally not possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Acute pancreatitis, including fatal pancreatitis [see Indications and Usage (1.1) and Warnings and Precautions (5.1)] Ketoacidosis [see Warnings and Precautions (5.3)] Urosepsis and pyelonephritis [see Warnings and Precautions (5.5)] Hypersensitivity reactions including anaphylaxis, angioedema, and exfoliative skin conditions [see Warnings and Precautions (5.8)] Severe and disabling arthralgia [see Warnings and Precautions (5.10)] Rash Mouth ulceration, stomatitis 7 DRUG INTERACTIONS 7.1 Drug Interactions with Empagliflozin Diuretics Coadministration of empagliflozin with diuretics resulted in increased urine volume and frequency of voids, which might enhance the potential for volume depletion [see Warnings and Precautions (5.2)]. Insulin or Insulin Secretagogues Coadministration of empagliflozin with insulin or insulin secretagogues increases the risk for hypoglycemia [see Warnings and Precautions (5.6)]. Positive Urine Glucose Test Monitoring glycemic control with urine glucose tests is not recommended in patients taking SGLT2 inhibitors as SGLT2 inhibitors increase urinary glucose excretion and will lead to positive urine glucose tests. Use alternative methods to monitor glycemic control. Interference with 1,5-anhydroglucitol (1,5-AG) Assay Monitoring glycemic control with 1,5-AG assay is not recommended as measurements of 1,5-AG are unreliable in assessing glycemic control in patients taking SGLT2 inhibitors. Use alternative methods to monitor glycemic control. 7.2 Drug Interactions with Linagliptin Inducers of P-glycoprotein or CYP3A4 Enzymes Rifampin decreased linagliptin exposure, suggesting that the efficacy of linagliptin may be reduced when administered in combination with a strong P-gp or CYP3A4 inducer. Therefore, use of alternative treatments is strongly recommended when linagliptin is to be administered with a strong P-gp or CYP3A4 inducer [see Clinical Pharmacology (12.3)]. 8 USE IN SPECIFIC POPULATIONS 8.1 Pregnancy Pregnancy Category C GLYXAMBI There are no adequate and well-controlled studies in pregnant women with GLYXAMBI or its individual components. GLYXAMBI should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Animal Data The combined components administered during the period of organogenesis were not teratogenic in rats up to and including a combined dose of 700 mg/kg/day empagliflozin and 140 mg/kg/day linagliptin, which is 253 and 353 times the clinical exposure. Maternal effects were limited to dose-related reduced body weight gain and concomitant reduced food consumption in pregnant rats administered a combination of ≥300 mg/kg/day empagliflozin and 60 mg/kg/day linagliptin which is 99 and 227 times the clinical exposure. A pre- and post-natal development study was not conducted with the combined components of GLYXAMBI. Empagliflozin Based on results from animal studies, empagliflozin may affect renal development and maturation. In studies conducted in rats, empagliflozin crosses the placenta and reaches fetal tissues. During pregnancy, consider appropriate alternative therapies, especially during the second and third trimesters. In pre- and postnatal development studies in pregnant rats, empagliflozin was administered from gestation day 6 through to lactation day 20 (weaning) at up to 100 mg/kg/day (approximately 16 times the 25 mg maximum clinical dose) without maternal toxicity. Reduced body weight was observed in the offspring at greater than or equal to 30 mg/kg/day (approximately 4 times the 25 mg maximum clinical dose). Linagliptin No functional, behavioral, or reproductive toxicity was observed in offspring of female Wistar Han rats when administered linagliptin from gestation day 6 to lactation day 21 at a dose 49 times the maximum recommended human dose, based on exposure. Linagliptin crosses the placenta into the fetus following oral dosing in pregnant rats and rabbits. 8.3 Nursing Mothers No studies in lactating animals have been conducted with the combined components of GLYXAMBI. Available animal data have shown excretion of empagliflozin and linagliptin in milk. It is not known whether empagliflozin and linagliptin are excreted in human milk. Empagliflozin is secreted in the milk of lactating rats reaching levels up to 5 times higher than that in maternal plasma. Since human kidney maturation occurs in utero and during the first 2 years of life when lactational exposure may occur, there may be risk to the developing human kidney. Because many drugs are excreted in human milk and because of the potential for serious adverse reactions in nursing infants from empagliflozin, a decision should be made whether to discontinue nursing or to discontinue GLYXAMBI, taking into account the importance of the drug to the mother. 8.4 Pediatric Use Safety and effectiveness of GLYXAMBI in pediatric patients under 18 years of age have not been established. 8.5 Geriatric Use GLYXAMBI Empagliflozin is associated with osmotic diuresis, which could affect hydration status of patients age 75 years and older. Empagliflozin No empagliflozin dosage change is recommended based on age [see Dosage and Administration (2)]. A total of 2721 (32%) patients treated with empagliflozin were 65 years of age and older, and 491 (6%) were 75 years of age and older. Empagliflozin is expected to have diminished efficacy in elderly patients with renal impairment [see Use in Specific Populations (8.6)]. The risk of volume depletion-related adverse reactions increased in patients who were 75 years of age and older to 2.1%, 2.3%, and 4.4% for placebo, empagliflozin 10 mg, and empagliflozin 25 mg. The risk of urinary tract infections increased in patients who were 75 years of age and older to 10.5%, 15.7%, and 15.1% in patients randomized to placebo, empagliflozin 10 mg, and empagliflozin 25 mg, respectively [see Warnings and Precautions (5.2) and Adverse Reactions (6.1)]. Linagliptin There were 4040 type 2 diabetes patients treated with linagliptin 5 mg from 15 clinical trials of linagliptin; 1085 (27%) were 65 years and over, while 131 (3%) were 75 years and over. Of these patients, 2566 were enrolled in 12 double-blind placebo-controlled studies; 591 (23%) were 65 years and over, while 82 (3%) were 75 years and over. No overall differences in safety or effectiveness were observed between patients 65 years and over and younger patients. Therefore, no dose adjustment is recommended in the elderly population. While clinical studies of linagliptin have not identified differences in response between the elderly and younger patients, greater sensitivity of some older individuals cannot be ruled out. 8.6 Renal Impairment Empagliflozin The efficacy and safety of empagliflozin have not been established in patients with severe renal impairment, with ESRD, or receiving dialysis. Empagliflozin is not expected to be effective in these patient populations [see Dosage and Administration (2.2), Contraindications (4) and Warnings and Precautions (5.2, 5.4)]. The glucose lowering benefit of empagliflozin 25 mg decreased in patients with worsening renal function. The risks of renal impairment [see Warnings and Precautions (5.4)], volume depletion adverse reactions and urinary tract infection-related adverse reactions increased with worsening renal function. 8.7 Hepatic Impairment GLYXAMBI may be used in patients with hepatic impairment [see Clinical Pharmacology (12.3)]. 10 OVERDOSAGE In the event of an overdose with GLYXAMBI, contact the Poison Control Center. Employ the usual supportive measures (e.g., remove unabsorbed material from the gastrointestinal tract, employ clinical monitoring, and institute supportive treatment) as dictated by the patient’s clinical status. Removal of empagliflozin by hemodialysis has not been studied, and removal of linagliptin by hemodialysis or peritoneal dialysis is unlikely. 11 DESCRIPTION GLYXAMBI tablets contain two oral antihyperglycemic drugs used in the management of type 2 diabetes: empagliflozin and linagliptin. Empagliflozin Empagliflozin is an orally-active inhibitor of the sodium-glucose co-transporter (SGLT2). The chemical name of empagliflozin is D-Glucitol,1,5-anhydro-1-C-[4-chloro-3-[[4-[[(3S)-tetrahydro-3-furanyl]oxy]phenyl]methyl]phenyl]-, (1S). The molecular formula is C23H27ClO7 and the molecular weight is 450.91. The structural formula is: Empagliflozin is a white to yellowish, non-hygroscopic powder. It is very slightly soluble in water, sparingly soluble in methanol, slightly soluble in ethanol and acetonitrile; soluble in 50% acetonitrile/water; and practically insoluble in toluene. Linagliptin Linagliptin is an orally-active inhibitor of the dipeptidyl peptidase-4 (DPP-4) enzyme. The chemical name of linagliptin is 1H-Purine-2,6-dione, 8-[(3R)-3-amino-1-piperidinyl]-7-(2-butyn-1-yl)-3,7-dihydro-3-methyl-1-[(4-methyl-2-quinazolinyl)methyl]- The molecular formula is C25H28N8O2 and the molecular weight is 472.54. The structural formula is: Linagliptin is a white to yellowish, not or only slightly hygroscopic solid substance. It is very slightly soluble in water. Linagliptin is soluble in methanol, sparingly soluble in ethanol, very slightly soluble in isopropanol, and very slightly soluble in acetone. GLYXAMBI GLYXAMBI tablets for oral administration are available in two dosage strengths containing 10 mg or 25 mg empagliflozin in combination with 5 mg linagliptin. The inactive ingredients of GLYXAMBI are the following: Tablet Core: mannitol, pregelatinized starch, corn starch, copovidone, crospovidone, talc and magnesium stearate. Coating: hypromellose, mannitol, talc, titanium dioxide, polyethylene glycol and ferric oxide, yellow (10 mg/5 mg) or ferric oxide, red (25 mg/5 mg). 12 CLINICAL PHARMACOLOGY 12.1 Mechanism of Action GLYXAMBI GLYXAMBI combines 2 antihyperglycemic agents with complementary mechanisms of action to improve glycemic control in patients with type 2 diabetes: empagliflozin, a sodium-glucose co-transporter 2 (SGLT2) inhibitor, and linagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor. Empagliflozin Sodium-glucose co-transporter 2 (SGLT2) is the predominant transporter responsible for reabsorption of glucose from the glomerular filtrate back into the circulation. Empagliflozin is an inhibitor of SGLT2. By inhibiting SGLT2, empagliflozin reduces renal reabsorption of filtered glucose and lowers the renal threshold for glucose, and thereby increases urinary glucose excretion. Linagliptin Linagliptin is an inhibitor of DPP-4, an enzyme that degrades the incretin hormones glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Thus, linagliptin increases the concentrations of active incretin hormones, stimulating the release of insulin in a glucose-dependent manner and decreasing the levels of glucagon in the circulation. Both incretin hormones are involved in the physiological regulation of glucose homeostasis. Incretin hormones are secreted at a low basal level throughout the day and levels rise immediately after meal intake. GLP-1 and GIP increase insulin biosynthesis and secretion from pancreatic beta cells in the presence of normal and elevated blood glucose levels. Furthermore, GLP-1 also reduces glucagon secretion from pancreatic alpha cells, resulting in a reduction in hepatic glucose output. 12.2 Pharmacodynamics Empagliflozin Urinary Glucose Excretion In patients with type 2 diabetes, urinary glucose excretion increased immediately following a dose of empagliflozin and was maintained at the end of a 4-week treatment period averaging at approximately 64 grams per day with 10 mg empagliflozin and 78 grams per day with 25 mg empagliflozin once daily. Urinary Volume In a 5-day study, mean 24-hour urine volume increase from baseline was 341 mL on Day 1 and 135 mL on Day 5 of empagliflozin 25 mg once daily treatment. Cardiac Electrophysiology In a randomized, placebo-controlled, active-comparator, crossover study, 30 healthy subjects were administered a single oral dose of empagliflozin 25 mg, empagliflozin 200 mg (8 times the maximum recommended dose), moxifloxacin, and placebo. No increase in QTc was observed with either 25 mg or 200 mg empagliflozin. Linagliptin Linagliptin binds to DPP-4 in a reversible manner and increases the concentrations of incretin hormones. Linagliptin glucose-dependently increases insulin secretion and lowers glucagon secretion, thus resulting in a better regulation of the glucose homeostasis. Linagliptin binds selectively to DPP-4 and selectively inhibits DPP-4, but not DPP-8 or DPP-9 activity in vitro at concentrations approximating therapeutic exposures. Cardiac Electrophysiology In a randomized, placebo-controlled, active-comparator, 4-way crossover study, 36 healthy subjects were administered a single oral dose of linagliptin 5 mg, linagliptin 100 mg (20 times the recommended dose), moxifloxacin, and placebo. No increase in QTc was observed with either the recommended dose of 5 mg or the 100-mg dose. At the 100-mg dose, peak linagliptin plasma concentrations were approximately 38-fold higher than the peak concentrations following a 5-mg dose. 12.3 Pharmacokinetics GLYXAMBI The results of the bioequivalence study in healthy subjects demonstrated that GLYXAMBI (25 mg empagliflozin/5 mg linagliptin) combination tablets are bioequivalent to coadministration of corresponding doses of empagliflozin and linagliptin as individual tablets. Administration of the fixed-dose combination with food resulted in no change in overall exposure of empagliflozin or linagliptin; however, the peak exposure was decreased 39% and 32% for empagliflozin and linagliptin, respectively. These changes are not likely to be clinically significant. Absorption Empagliflozin The pharmacokinetics of empagliflozin has been characterized in healthy volunteers and patients with type 2 diabetes and no clinically relevant differences were noted between the two populations. After oral administration, peak plasma concentrations of empagliflozin were reached at 1.5 hours post-dose. Thereafter, plasma concentrations declined in a biphasic manner with a rapid distribution phase and a relatively slow terminal phase. The steady state mean plasma AUC and Cmax were 1870 nmol·h/L and 259 nmol/L, respectively, with 10 mg empagliflozin once daily treatment, and 4740 nmol·h/L and 687 nmol/L, respectively, with 25 mg empagliflozin once daily treatment. Systemic exposure of empagliflozin increased in a dose-proportional manner in the therapeutic dose range. The single-dose and steady-state pharmacokinetic parameters of empagliflozin were similar, suggesting linear pharmacokinetics with respect to time. Administration of 25 mg empagliflozin after intake of a high-fat and high-calorie meal resulted in slightly lower exposure; AUC decreased by approximately 16% and Cmax decreased by approximately 37%, compared to fasted condition. The observed effect of food on empagliflozin pharmacokinetics was not considered clinically relevant and empagliflozin may be administered with or without food. Linagliptin The absolute bioavailability of linagliptin is approximately 30%. High-fat meal reduced Cmax by 15% and increased AUC by 4%; this effect is not clinically relevant. Linagliptin may be administered with or without food. Distribution Empagliflozin The apparent steady-state volume of distribution was estimated to be 73.8 L based on a population pharmacokinetic analysis. Following administration of an oral [14C]-empagliflozin solution to healthy subjects, the red blood cell partitioning was approximately 36.8% and plasma protein binding was 86.2%. Linagliptin The mean apparent volume of distribution at steady state following a single intravenous dose of linagliptin 5 mg to healthy subjects is approximately 1110 L, indicating that linagliptin extensively distributes to the tissues. Plasma protein binding of linagliptin is concentration-dependent, decreasing from about 99% at 1 nmol/L to 75% to 89% at ≥30 nmol/L, reflecting saturation of binding to DPP-4 with increasing concentration of linagliptin. At high concentrations, where DPP-4 is fully saturated, 70% to 80% of linagliptin remains bound to plasma proteins and 20% to 30% is unbound in plasma. Plasma binding is not altered in patients with renal or hepatic impairment. Metabolism Empagliflozin No major metabolites of empagliflozin were detected in human plasma and the most abundant metabolites were three glucuronide conjugates (2-O-, 3-O-, and 6-O-glucuronide). Systemic exposure of each metabolite was less than 10% of total drug-related material. In vitro studies suggested that the primary route of metabolism of empagliflozin in humans is glucuronidation by the uridine 5'-diphospho-glucuronosyltransferases UGT2B7, UGT1A3, UGT1A8, and UGT1A9. Linagliptin Following oral administration, the majority (about 90%) of linagliptin is excreted unchanged, indicating that metabolism represents a minor elimination pathway. A small fraction of absorbed linagliptin is metabolized to a pharmacologically inactive metabolite, which shows a steady-state exposure of 13.3% relative to linagliptin. Elimination Empagliflozin The apparent terminal elimination half-life of empagliflozin was estimated to be 12.4 h and apparent oral clearance was 10.6 L/h based on the population pharmacokinetic analysis. Following once-daily dosing, up to 22% accumulation, with respect to plasma AUC, was observed at steady-state, which was consistent with empagliflozin half-life. Following administration of an oral [14C]-empagliflozin solution to healthy subjects, approximately 95.6% of the drug-related radioactivity was eliminated in feces (41.2%) or urine (54.4%). The majority of drug-related radioactivity recovered in feces was unchanged parent drug and approximately half of drug-related radioactivity excreted in urine was unchanged parent drug. Linagliptin Following administration of an oral [14C]-linagliptin dose to healthy subjects, approximately 85% of the administered radioactivity was eliminated via the enterohepatic system (80%) or urine (5%) within 4 days of dosing. Renal clearance at steady state was approximately 70 mL/min. Specific Populations Renal Impairment GLYXAMBI: Studies characterizing the pharmacokinetics of empagliflozin and linagliptin after administration of GLYXAMBI in renally impaired patients have not been performed [see Dosage and Administration (2.2)]. Empagliflozin: In patients with mild (eGFR: 60 to less than 90 mL/min/1.73 m2), moderate (eGFR: 30 to less than 60 mL/min/1.73 m2), and severe (eGFR: less than 30 mL/min/1.73 m2) renal impairment and subjects with kidney failure/end stage renal disease (ESRD) patients, AUC of empagliflozin increased by approximately 18%, 20%, 66%, and 48%, respectively, compared to subjects with normal renal function. Peak plasma levels of empagliflozin were similar in subjects with moderate renal impairment and kidney failure/ESRD compared to patients with normal renal function. Peak plasma levels of empagliflozin were roughly 20% higher in subjects with mild and severe renal impairment as compared to subjects with normal renal function. Population pharmacokinetic analysis showed that the apparent oral clearance of empagliflozin decreased, with a decrease in eGFR leading to an increase in drug exposure. However, the fraction of empagliflozin that was excreted unchanged in urine, and urinary glucose excretion, declined with decrease in eGFR. Linagliptin: An open-label pharmacokinetic study evaluated the pharmacokinetics of linagliptin 5 mg in male and female patients with varying degrees of chronic renal impairment. The study included 6 healthy subjects with normal renal function (creatinine clearance [CrCl] ≥80 mL/min), 6 patients with mild renal impairment (CrCl 50 to <80 mL/min), 6 patients with moderate renal impairment (CrCl 30 to <50 mL/min), 10 patients with type 2 diabetes and severe renal impairment (CrCl <30 mL/min), and 11 patients with type 2 diabetes and normal renal function. Creatinine clearance was measured by 24-hour urinary creatinine clearance measurements or estimated from serum creatinine based on the Cockcroft-Gault formula. Under steady-state conditions, linagliptin exposure in patients with mild renal impairment was comparable to healthy subjects. In patients with moderate renal impairment under steady-state conditions, mean exposure of linagliptin increased (AUCτ,ss by 71% and Cmax by 46%) compared with healthy subjects. This increase was not associated with a prolonged accumulation half-life, terminal half-life, or an increased accumulation factor. Renal excretion of linagliptin was below 5% of the administered dose and was not affected by decreased renal function. Patients with type 2 diabetes and severe renal impairment showed steady-state exposure approximately 40% higher than that of patients with type 2 diabetes and normal renal function (increase in AUCτ,ss by 42% and Cmax by 35%). For both type 2 diabetes groups, renal excretion was below 7% of the administered dose. These findings were further supported by the results of population pharmacokinetic analyses. Hepatic Impairment GLYXAMBI: Studies characterizing the pharmacokinetics of empagliflozin and linagliptin after administration of GLYXAMBI in hepatically impaired patients have not been performed. Empagliflozin: In subjects with mild, moderate, and severe hepatic impairment according to the Child-Pugh classification, AUC of empagliflozin increased by approximately 23%, 47%, and 75% and Cmax increased by approximately 4%, 23%, and 48%, respectively, compared to subjects with normal hepatic function. Linagliptin: In patients with mild hepatic impairment (Child-Pugh class A) steady-state exposure (AUCτ,ss) of linagliptin was approximately 25% lower and Cmax,ss was approximately 36% lower than in healthy subjects. In patients with moderate hepatic impairment (Child-Pugh class B), AUCss of linagliptin was about 14% lower and Cmax,ss was approximately 8% lower than in healthy subjects. Patients with severe hepatic impairment (Child-Pugh class C) had comparable exposure of linagliptin in terms of AUC0-24 and approximately 23% lower Cmax compared with healthy subjects. Reductions in the pharmacokinetic parameters seen in patients with hepatic impairment did not result in reductions in DPP-4 inhibition. Effects of Age, Body Mass Index, Gender, and Race Empagliflozin: Based on the population PK analysis, age, body mass index (BMI), gender and race (Asians versus primarily Whites) do not have a clinically meaningful effect on pharmacokinetics of empagliflozin [see Use in Specific Populations (8.5)]. Linagliptin: Based on the population PK analysis, age, body mass index (BMI), gender and race do not have a clinically meaningful effect on pharmacokinetics of linagliptin [see Use in Specific Populations (8.5)]. Pediatric Studies characterizing the pharmacokinetics of empagliflozin or linagliptin after administration of GLYXAMBI in pediatric patients have not been performed. Drug Interactions Pharmacokinetic drug interaction studies with GLYXAMBI have not been performed; however, such studies have been conducted with the individual components of GLYXAMBI (empagliflozin and linagliptin). Empagliflozin In vitro Assessment of Drug Interactions In vitro data suggest that the primary route of metabolism of empagliflozin in humans is glucuronidation by the uridine 5'-diphospho-glucuronosyltransferases UGT2B7, UGT1A3, UGT1A8, and UGT1A9. Empagliflozin does not inhibit, inactivate, or induce CYP450 isoforms. Empagliflozin also does not inhibit UGT1A1. Therefore, no effect of empagliflozin is anticipated on concomitantly administered drugs that are substrates of the major CYP450 isoforms or UGT1A1. The effect of UGT induction (e.g., induction by rifampicin or any other UGT enzyme inducer) on empagliflozin exposure has not been evaluated. Empagliflozin is a substrate for P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), but it does not inhibit these efflux transporters at therapeutic doses. Based on in vitro studies, empagliflozin is considered unlikely to cause interactions with drugs that are P-gp substrates. Empagliflozin is a substrate of the human uptake transporters OAT3, OATP1B1, and OATP1B3, but not OAT1 and OCT2. Empagliflozin does not inhibit any of these human uptake transporters at clinically relevant plasma concentrations and, therefore, no effect of empagliflozin is anticipated on concomitantly administered drugs that are substrates of these uptake transporters. In vivo Assessment of Drug Interactions No dose adjustment of empagliflozin is recommended when coadministered with commonly prescribed medicinal products based on results of the described pharmacokinetic studies. Empagliflozin pharmacokinetics were similar with and without coadministration of metformin, glimepiride, pioglitazone, sitagliptin, linagliptin, warfarin, verapamil, ramipril, simvastatin, hydrochlorothiazide, and torasemide in healthy volunteers (see Figure 1). The observed increases in overall exposure (AUC) of empagliflozin following coadministration with gemfibrozil, rifampicin, or probenecid are not clinically relevant. In subjects with normal renal function, coadministration of empagliflozin with probenecid resulted in a 30% decrease in the fraction of empagliflozin excreted in urine without any effect on 24-hour urinary glucose excretion. The relevance of this observation to patients with renal impairment is unknown. Figure 1 Effect of Various Medications on the Pharmacokinetics of Empagliflozin as Displayed as 90% Confidence Interval of Geometric Mean AUC and Cmax Ratios [reference lines indicate 100% (80% - 125%)] aempagliflozin, 50 mg, once daily; bempagliflozin, 25 mg, single dose; cempagliflozin, 25 mg, once daily; dempagliflozin, 10 mg, single dose
bSingle dose cAUC = AUC(0 to 24 hours) for single dose treatments and AUC = AUC(TAU) for multiple dose treatments QD = once daily BID = twice daily TID = three times daily Table 4 Effect of Linagliptin on Systemic Exposure of Coadministered Drugs
bSingle dose cAUC = AUC(INF) for single dose treatments and AUC = AUC(TAU) for multiple dose treatments dAUC=AUC(0-168) and Cmax=Emax for pharmacodynamic end points INR = International Normalized Ratio PT = Prothrombin Time QD = once daily TID = three times daily 13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility GLYXAMBI No animal studies have been conducted with the combination of empagliflozin and linagliptin to evaluate carcinogenesis, mutagenesis, or impairment of fertility. General toxicity studies in rats up to 13 weeks were performed with the combined components. These studies indicated that no additive toxicity is caused by the combination of empagliflozin and linagliptin. Empagliflozin Carcinogenesis was evaluated in 2-year studies conducted in CD-1 mice and Wistar rats. Empagliflozin did not increase the incidence of tumors in female rats dosed at 100, 300, or 700 mg/kg/day (up to 72 times the exposure from the maximum clinical dose of 25 mg). In male rats, hemangiomas of the mesenteric lymph node were increased significantly at 700 mg/kg/day or approximately 42 times the exposure from a 25 mg clinical dose. Empagliflozin did not increase the incidence of tumors in female mice dosed at 100, 300, or 1000 mg/kg/day (up to 62 times the exposure from a 25 mg clinical dose). Renal tubule adenomas and carcinomas were observed in male mice at 1000 mg/kg/day, which is approximately 45 times the exposure of the maximum clinical dose of 25 mg. Empagliflozin was not mutagenic or clastogenic with or without metabolic activation in the in vitro Ames bacterial mutagenicity assay, the in vitro L5178Y tk+/- mouse lymphoma cell assay, and an in vivo micronucleus assay in rats. Empagliflozin had no effects on mating, fertility or early embryonic development in treated male or female rats up to the high dose of 700 mg/kg/day (approximately 155 times the 25 mg clinical dose in males and females, respectively). Linagliptin Linagliptin did not increase the incidence of tumors in male and female rats in a 2-year study at doses of 6, 18, and 60 mg/kg. The highest dose of 60 mg/kg is approximately 418 times the clinical dose of 5 mg/day based on AUC exposure. Linagliptin did not increase the incidence of tumors in mice in a 2-year study at doses up to 80 mg/kg (males) and 25 mg/kg (females), or approximately 35- and 270-times the clinical dose based on AUC exposure. Higher doses of linagliptin in female mice (80 mg/kg) increased the incidence of lymphoma at approximately 215-times the clinical dose based on AUC exposure. Linagliptin was not mutagenic or clastogenic with or without metabolic activation in the Ames bacterial mutagenicity assay, a chromosomal aberration test in human lymphocytes, and an in vivo micronucleus assay. In fertility studies in rats, linagliptin had no adverse effects on early embryonic development, mating, fertility, or bearing live young up to the highest dose of 240 mg/kg (approximately 943-times the clinical dose based on AUC exposure). 14 CLINICAL STUDIES Add-on Combination Therapy with Metformin A total of 686 patients with type 2 diabetes participated in a double-blind, active-controlled study to evaluate the efficacy and safety of empagliflozin 10 mg or 25 mg in combination with linagliptin 5 mg compared to the individual components. Patients with type 2 diabetes inadequately controlled on at least 1500 mg of metformin per day entered a single-blind placebo run-in period for 2 weeks. At the end of the run-in period, patients who remained inadequately controlled and had an HbA1c between 7 and 10.5% were randomized 1:1:1:1:1 to one of 5 active-treatment arms of empagliflozin 10 mg or 25 mg, linagliptin 5 mg, or linagliptin 5 mg in combination with 10 mg or 25 mg empagliflozin as a fixed dose combination tablet. At Week 24, empagliflozin 10 mg or 25 mg used in combination with linagliptin 5 mg provided statistically significant improvement in HbA1c (p-value <0.0001) and FPG (p-value <0.001) compared to the individual components in patients who had been inadequately controlled on metformin (see Table 5, Figure 3). Treatment with GLYXAMBI 25 mg/5 mg or GLYXAMBI 10 mg/5 mg daily also resulted in a statistically significant reduction in body weight compared to linagliptin 5 mg (p-value <0.0001). There was no statistically significant difference compared to empagliflozin alone. Table 5 Glycemic Parameters at 24 Weeks in a Study Comparing GLYXAMBI to the Individual Components as Add-on Therapy in Patients Inadequately Controlled on Metformin
bPatients with HbA1c above 7% at baseline: GLYXAMBI 25 mg/5 mg, n=123; GLYXAMBI 10 mg/5 mg, n=128; empagliflozin 25 mg, n=132; empagliflozin 10 mg, n=125; linagliptin 5 mg, n=119. Non-completers were considered failures (NCF). cFull analysis population using last observation carried forward. ANCOVA model included treatment, renal function, region, baseline weight, and baseline HbA1c. dp<0.001 for FPG; p<0.0001 for HbA1c and body weight Figure 3 Adjusted Mean HbA1c Change at Each Time Point (Completers) and at Week 24 (mITT population) 16 HOW SUPPLIED/STORAGE AND HANDLING GLYXAMBI (empagliflozin and linagliptin) tablets are available in 10 mg/5 mg and 25 mg/5 mg strengths as follows: 10 mg/5 mg tablets: pale yellow, arc triangular, flat-faced, bevel-edged, film-coated tablets. One side is debossed with the Boehringer Ingelheim company symbol; the other side is debossed with "10/5". Bottles of 30 (NDC 0597-0182-30) Bottles of 90 (NDC 0597-0182-90) Bottles of 1000 (NDC 0597-0182-10) Cartons containing 3 blister cards of 10 tablets each (3 x 10) (NDC 0597-0182-39), institutional pack. 25 mg/5 mg tablets: pale pink, arc triangular, flat-faced, bevel-edged, film-coated tablets. One side is debossed with the Boehringer Ingelheim company symbol; the other side is debossed with "25/5". Bottles of 30 (NDC 0597-0164-30) Bottles of 90 (NDC 0597-0164-90) Bottles of 1000 (NDC 0597-0164-10) Cartons containing 3 blister cards of 10 tablets each (3 x 10) (NDC 0597-0164-39), institutional pack. If repackaging is required, dispense in a tight container as defined in USP. Storage Store at 25°C (77°F); excursions permitted to 15°-30°C (59°-86°F) [see USP Controlled Room Temperature]. Store in a safe place out of reach of children. 17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Instructions Instruct patients to read the Medication Guide before starting GLYXAMBI therapy and to reread it each time the prescription is renewed. Instruct patients to inform their doctor or pharmacist if they develop any unusual symptom, or if any known symptom persists or worsens. Inform patients of the potential risks and benefits of GLYXAMBI and of alternative modes of therapy. Also, inform patients about the importance of adherence to dietary instructions, regular physical activity, periodic blood glucose monitoring and HbA1c testing, recognition and management of hypoglycemia and hyperglycemia, and assessment for diabetes complications. Advise patients to seek medical advice promptly during periods of stress such as fever, trauma, infection, or surgery, as medication requirements may change. Instruct patients to take GLYXAMBI only as prescribed. If a dose is missed, it should be taken as soon as the patient remembers. Advise patients not to double their next dose. Inform female patients of child bearing age that the use of GLYXAMBI during pregnancy has not been studied in humans, and that GLYXAMBI should only be used during pregnancy only if the potential benefit justifies the potential risk to the fetus. Based on animal data, empagliflozin may cause fetal harm in the second and third trimesters. Instruct patients to report pregnancies to their physicians as soon as possible. Inform nursing mothers to discontinue GLYXAMBI or nursing, taking into account the importance of the drug to the mother. It is not known if empagliflozin or linagliptin is excreted in breast milk; however, based on animal data, empagliflozin may cause harm to nursing infants. Pancreatitis Inform patients that acute pancreatitis has been reported during postmarketing use of linagliptin. Inform patients that persistent severe abdominal pain, sometimes radiating to the back, which may or may not be accompanied by vomiting, is the hallmark symptom of acute pancreatitis. Instruct patients to discontinue GLYXAMBI promptly and contact their physician if persistent severe abdominal pain occurs [see Warnings and Precautions (5.1)]. Hypoglycemia Inform patients that the incidence of hypoglycemia is increased when empagliflozin, linagliptin, or GLYXAMBI is added to a sulfonylurea or insulin and that a lower dose of the sulfonylurea or insulin may be required to reduce the risk of hypoglycemia. Hypersensitivity Reactions Inform patients that serious allergic reactions, such as anaphylaxis, angioedema, and exfoliative skin conditions, have been reported during postmarketing use of linagliptin (one of the components of GLYXAMBI). If symptoms of allergic reactions (such as rash, skin flaking or peeling, urticaria, swelling of the skin, or swelling of the face, lips, tongue, and throat that may cause difficulty in breathing or swallowing) occur, patients must stop taking GLYXAMBI and seek medical advice promptly. Hypotension Inform patients that hypotension may occur with GLYXAMBI and advise them to contact their healthcare provider if they experience such symptoms [see Warnings and Precautions (5.2)]. Inform patients that dehydration may increase the risk for hypotension, and to have adequate fluid intake. Ketoacidosis Inform patients that ketoacidosis has been reported during use of empagliflozin. Instruct patients to check ketones (when possible) if symptoms consistent with ketoacidosis occur even if blood glucose is not elevated. If symptoms of ketoacidosis (including nausea, vomiting, abdominal pain, tiredness, and labored breathing) occur, instruct patients to discontinue GLYXAMBI and seek medical advice immediately [see Warnings and Precautions (5.3)]. Serious Urinary Tract Infections Inform patients of the potential for urinary tract infections, which may be serious. Provide them with information on the symptoms of urinary tract infections. Advise them to seek medical advice if such symptoms occur [see Warnings and Precautions (5.5)]. Genital Mycotic Infections in Females (e.g., Vulvovaginitis) Inform female patients that vaginal yeast infections may occur and provide them with information on the signs and symptoms of vaginal yeast infections. Advise them of treatment options and when to seek medical advice [see Warnings and Precautions (5.7)]. Genital Mycotic Infections in Males (e.g., Balanitis or Balanoposthitis) Inform male patients that yeast infection of penis (e.g., balanitis or balanoposthitis) may occur, especially in uncircumcised males and patients with chronic and recurrent infections. Provide them with information on the signs and symptoms of balanitis and balanoposthitis (rash or redness of the glans or foreskin of the penis). Advise them of treatment options and when to seek medical advice [see Warnings and Precautions (5.7)]. Severe and Disabling Arthralgia Inform patients that severe and disabling joint pain may occur with this class of drugs. The time to onset of symptoms can range from one day to years. Instruct patients to seek medical advice if severe joint pain occurs [see Warnings and Precautions (5.9)]. Laboratory Tests Inform patients that renal function should be assessed prior to initiation of GLYXAMBI and monitored periodically thereafter. Inform patients that elevated glucose in urinalysis is expected when taking GLYXAMBI. Inform patients that response to all diabetic therapies should be monitored by periodic measurements of blood glucose and HbA1c levels, with a goal of decreasing these levels toward the normal range. Hemoglobin A1c is especially useful for evaluating long-term glycemic control. http://dailymed.nlm.nih.gov/dailymed/drugInfo.cfm?setid=ddbab689-f76c-488c-9613-4168d41dd730 2型糖尿病药物Glyxambi(empagliflozin+Linagliptin)获FDA批准首个DPP-4和SGLT-2抑制剂组合 2月2日,美国FDA批准了钠葡萄糖协同转运蛋白2(SGLT2)抑制剂empagliflozin和二肽基肽酶-4(DPP-4)抑制剂利拉利汀(Linagliptin)两个固定剂量的复方组合(商品名:Glyxambi),用于结合饮食和运动控制2型糖尿病成人患者的血糖水平。这个复方片剂含有10或25毫克的empagliflozin以及5毫克的利拉利汀。在一个有677名2型糖尿病患者参与的3期临床实验中,这些成人患者之前虽然服用高剂量的二甲双胍(每日至少1500毫克)但基线血红蛋白A1c(HbA1c)水平仍然高于7.0%,每日一次连续24周配给含有10毫克或25毫克empagliflozin的Glyxambi复方片,和empagliflozin或利拉利汀单独用药组相比,血红蛋白A1c或空腹血糖水平改善的幅度明显提高。最常见不良事件包括尿路感染(11.4%-12.5%)、鼻咽炎、和上呼吸道感染。Glyxambi由勃林格殷格翰和礼来共同开发,是第一个也是唯一的一个获得FDA批准的DPP-4抑制剂和SGLT-2抑制剂的复方组合。 药源解析 全球大约有3.87亿糖尿病患者,其中美国2900万,中国1.14亿。二甲双胍是最常用的一线口服药物,但大约有一半患者使用最高剂量的二甲双胍还不能把血糖维持在正常水平。对这些患者,GLP-1受体激动剂、DPP-4抑制剂和SGLT-2抑制剂等新型降糖药已经成为多个“治疗指南”推荐的二线药物。 GLP-1受体激动剂能提高葡萄糖依赖性的胰岛素分泌并降低餐后胰高血糖素分泌。DPP4水解GLP,所以抑制DPP4可以延长GLP的半衰期,取得降糖效果。钠-葡萄糖协同转运蛋白2(SGLT2)抑制剂阻断肾脏葡萄糖的重吸收因此增加尿液中血糖的排泄。多个大型临床实验表明,这些新的降糖机制不仅能有效地控制2型糖尿病患者的血糖水平,GLP-1受体激动剂和SGLT2抑制剂还能在一定程度上降低患者的体重,起到减肥作用。GLP-1、DPP4、和SGLT2因此也成为药厂追逐的优质靶点,相应地市场竞争也异常激烈。比如全球上市的DPP-4抑制剂就有7个,分别是Sitagliptin、Vildagliptin、Saxagliptin、Alogliptin、Linagliptin、Gemigliptin、和Teneligliptin。 GLP-1受体激动剂、DPP-4抑制剂和SGLT-2抑制剂这些新型降糖药物都能和二甲双胍联合使用,并显示更好的疗效。所以开发和二甲双胍固定剂量的复方制剂作为2型糖尿病的一线用药也是这些厂家扩展市场的重要策略。实际上,大多数开发DPP-4抑制剂的厂家随后也申报和二甲双胍的复方制剂。除此之外,理论上这些新型降糖机制互相之间的复方甚至三方组合也可能产生更好的降糖效果。Empagliflozin和Linagliptin固定剂量的复方组合是第一个也是唯一一个获得FDA批准的SGLT-2抑制剂和DPP-4抑制剂的复方组合。 |