繁体中文
设为首页
加入收藏
当前位置:药品说明书与价格首页 >> 抗感染类 >> 药品目录 >> 抗生素类 >> 其它抗菌抗生素类 >> 琥乙红霉素干混悬剂|E.E.S.(erythromycin ethylsuccinate)

琥乙红霉素干混悬剂|E.E.S.(erythromycin ethylsuccinate)

2014-11-11 10:48:37  作者:新特药房  来源:互联网  浏览次数:271  文字大小:【】【】【
简介: 部份中文琥乙红霉素处方资料(仅供参考)【适应症】用于治疗支原体肺炎;沙眼衣原体引起的新生儿结膜炎、婴儿肺炎;生殖泌尿道感染(包括非淋病性尿道炎);军团菌病;白喉(辅助治疗)及白喉带菌者;皮肤软 ...

部份中文琥乙红霉素处方资料(仅供参考)
【适应症】
用于治疗支原体肺炎;沙眼衣原体引起的新生儿结膜炎、婴儿肺炎;生殖泌尿道感染(包括非淋病性尿道炎);军团菌病;白喉(辅助治疗)及白喉带菌者;皮肤软组织感染;百日咳;链球菌咽峡炎;李斯德菌感染等症状。
【用法用量】
将本品倒入杯中,加入适量凉开水,摇匀后口服。成人一日1.6g,分2~4次服用。军团菌病患者,一次0.4~1.0g,一日4次,成人每日量一般不宜超过4g。预防链球菌感染,一次0.4g,一日2次。衣原体或溶脲脲原体感染一次0.8g,每8小时1次,共7日;或一次0.4g,每6小时1次,共14日。小儿按体重一次7.5~12.5mg/kg,一日4次;或一次15~25mg/kg,一日2次;严重感染每日量可加倍,分4次服用。百日咳患儿,按体重一次10~12.5mg/kg,一日4次,疗程14日。或遵医嘱。
【不良反应】
1.服用本品后发生肝毒性反应者较服用其他红霉素制剂为多见,服药数日或1~2周后患者可出现乏力、恶心、呕吐、腹痛、皮疹、发热等。有时可出现黄疸,肝功能试验显示淤胆,停药后常可恢复。
2.胃肠道反应有腹泻、恶心、呕吐、中上腹痛、口舌疼痛、胃纳减退等,其发生率与剂量大小有关。
3.大剂量(≥4g/日)应用时,尤其肝、肾疾病患者或老年患者,可能引起听力减退,主要与血药浓度过高(>12mg/L)有关,停药后大多可恢复。
4.过敏反应表现为药物热、皮疹、嗜酸粒细胞增多等,发生率约0.5%~1%。
5.偶有心律失常,口腔或阴道念珠菌感染。
【禁 忌】
对本品中任何成份或其他红霉素制剂过敏者、慢性肝病患者、肝功能损害者及孕妇禁用。
【注意事项】
1.溶血性链球菌感染用本品治疗时,至少需持续10日,以防止急性风湿热的发生。
2.肾功能减退患者一般无需减少用量,但严重肾功能损害者本品的剂量应适当减少。
3.用药期间定期检查肝功能。
4.患者对一种红霉素制剂过敏或不能耐受时,对其他红霉素制剂也可能过敏或不能耐受。
5.因不同细菌对红霉素的敏感性存在一定差异,故应做药敏测定。
6.使用本品期间,如出现任何不良事件和/或不良反应,请咨询医生。
7.同时使用其他药品,请告知医生。
8.请放置于儿童不能够触及的地方。
【儿童用药】尚不明确。
【老年患者用
尚缺乏老年人群的系统研究数据,如老年人药代动力学无变化,则可参考成人用法用量并遵医嘱使用。
【孕妇及哺乳期妇女用药】
1.因出现肝毒性反应的可能性增加,故孕妇禁用。
2.由于本品有相当量进入母乳中,故哺乳期妇女慎用或暂停哺乳。


E.E.S. - erythromycin ethylsuccinate suspension 
E.E.S. - erythromycin ethylsuccinate granule, for suspension 
E.E.S. - erythromycin ethylsuccinate tablet, film coated 
Abbott Laboratories
E.E.S.®
(erythromycin ethylsuccinate)

To reduce the development of drug-resistant bacteria and maintain the effectiveness of E.E.S. and other antibacterial drugs, E.E.S. should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria.

DESCRIPTION

Erythromycin is produced by a strain of Saccharopolyspora erythraea (formerly Streptomyces erythraeus) and belongs to the macrolide group of antibiotics. It is basic and readily forms salts with acids. The base, the stearate salt, and the esters are poorly soluble in water. Erythromycin ethylsuccinate is an ester of erythromycin suitable for oral administration. Erythromycin ethylsuccinate is known chemically as erythromycin 2'-(ethylsuccinate). The molecular formula is C43H75NO16 and the molecular weight is 862.06. The structural formula is:

E.E.S. Granules are intended for reconstitution with water. Each 5-mL teaspoonful of reconstituted cherry-flavored suspension contains erythromycin ethylsuccinate equivalent to 200 mg of erythromycin.

The pleasant tasting, fruit-flavored liquids are supplied ready for oral administration.

E.E.S. 200 Liquid: Each 5-mL teaspoonful of fruit-flavored suspension contains erythromycin ethylsuccinate equivalent to 200 mg of erythromycin.

E.E.S. 400 Liquid: Each 5-mL teaspoonful of orange-flavored suspension contains erythromycin ethylsuccinate equivalent to 400 mg of erythromycin.

Granules and ready-made suspensions are intended primarily for pediatric use but can also be used in adults.

E.E.S. 400® Filmtab® Tablets: Each tablet contains erythromycin ethylsuccinate equivalent to 400 mg of erythromycin.

The Filmtab® tablets are intended primarily for adults or older children.

Inactive Ingredients

E.E.S. 200 Liquid: FD&C Red No. 40, methylparaben, polysorbate 60, propylparaben,sodium citrate, sucrose, water, xanthan gum and natural and artificial flavors.

E.E.S. 400 Liquid: D&C Yellow No. 10, FD&C Yellow No. 6, methylparaben, polysorbate 60, propylparaben, sodium citrate, sucrose, water, xanthan gum and natural and artificial flavors.

E.E.S. Granules: Citric acid, FD&C Red No. 3, magnesium aluminum silicate, sodium carboxymethylcellulose, sodium citrate, sucrose and artificial flavor.

E.E.S. 400 Filmtab Tablets: Cellulosic polymers, confectioner's sugar (contains corn starch), corn starch, D&C Red No. 30, D&C Yellow No. 10, FD&C Red No. 40, magnesium stearate, polacrilin potassium, polyethylene glycol, propylene glycol, sodium citrate, sorbic acid, and titanium dioxide.

CLINICAL PHARMACOLOGY

Orally administered erythromycin ethylsuccinate suspensions and Filmtab tablets are readily and reliably absorbed. Comparable serum levels of erythromycin are achieved in the fasting and nonfasting states.

Erythromycin diffuses readily into most body fluids. Only low concentrations are normally achieved in the spinal fluid, but passage of the drug across the blood-brain barrier increases in meningitis. In the presence of normal hepatic function, erythromycin is concentrated in the liver and excreted in the bile; the effect of hepatic dysfunction on excretion of erythromycin by the liver into the bile is not known. Less than 5 percent of the orally administered dose of erythromycin is excreted in active form in the urine.

Erythromycin crosses the placental barrier, but fetal plasma levels are low. The drug is excreted in human milk.

Microbiology

Erythromycin acts by inhibition of protein synthesis by binding 50 S ribosomal subunits of susceptible organisms. It does not affect nucleic acid synthesis. Antagonism has been demonstrated in vitro between erythromycin and clindamycin, lincomycin, and chloramphenicol.

Many strains of Haemophilus influenzae are resistant to erythromycin alone but are susceptible to erythromycin and sulfonamides used concomitantly.

Staphylocci resistant to erythromycin may emerge during a course of therapy.

Erythromycin has been shown to be active against most strains of the following microorganisms, both in vitro and in clinical infections as described in the INDICATIONS AND USAGE section.

Gram-positive Organisms

Corynebacterium diphtheriae

Corynebacterium minutissimum

Listeria monocytogenes

Staphylococcus aureus(resistant organisms may emerge during treatment)

Streptococcus pneumoniae

Streptococcus pyogenes

Gram-negative Organisms

Bordetella pertussis

Legionella pneumophila

Neisseria gonorrhoeae

Other Microorganisms

Chlamydia trachomatis

Entamoeba histolytica

Mycoplasma pneumoniae

Treponema pallidum

Ureaplasma urealyticum

The following in vitro data are available, but their clinical significance is unknown.

Erythromycin exhibits in vitro minimal inhibitory concentrations (MIC's) of 0.5 μg/mL or less against most (≥ 90%) strains of the following microorganisms; however, the safety and effectiveness of erythromycin in treating clinical infections due to these microorganisms have not been established in adequate and well controlled clinical trials.

Gram-positive Organisms

Viridans group streptococci

Gram-negative Organisms

Moraxella catarrhalis

Susceptibility Tests

Dilution Techniques

Quantitative methods are used to determine antimicrobial minimum inhibitory concentrations (MIC's). These MIC's provide estimates of the susceptibility of bacteria to antimicrobial compounds. The MIC's should be determined using a standardized procedure. Standardized procedures are based on a dilution method1 (broth or agar) or equivalent with standardized inoculum concentrations and standardized concentrations of erythromycin powder. The MIC values should be interpreted according to the following criteria:

MIC (μg/mL) Interpretation
≤ 0.5 Susceptible (S)
1-4 Intermediate (I)
≥ 8 Resistant (R)

A report of "Susceptible" indicates that the pathogen is likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable. A report of "Intermediate" indicates that the result should be considered equivocal, and, if the microorganism is not fully susceptible to alternative, clinically feasible drugs, the test should be repeated. This category implies possible clinical applicability in body sites where the drug is physiologically concentrated or in situations where high dosage of drug can be used. This category also provides a buffer zone which prevents small uncontrolled technical factors from causing major discrepancies in interpretation. A report of "Resistant" indicates that the pathogen is not likely to be inhibited if the antimicrobial compound in the blood reaches the concentrations usually achievable; other therapy should be selected.

Standardized susceptibility test procedures require the use of laboratory control microorganisms to control the technical aspects of the laboratory procedures. Standard erythromycin powder should provide the followingMIC values:

Microorganism MIC (μg/mL)
S. aureus ATCC 25923 0.12-0.5
E. faecalis ATCC 29212 1-4
Diffusion Techniques

Quantitative methods that require measurement of zone diameters also provide reproducible estimates of the susceptibility of bacteria to antimicrobial compounds. One such standardized procedure2 requires the use of standardized inoculum concentrations. This procedure uses paper disks impregnated with 15-μg erythromycin to test the susceptibility of microorganisms to erythromycin.

Reports from the laboratory providing results of the standard single-disk susceptibility test with a 15-μg erythromycin disk should be interpreted according to the following criteria:

Zone Diameter (mm) Interpretation
≥ 23 Susceptible (S)
14-22 Intermediate (I)
≤ 13 Resistant (R)

Interpretation should be as stated above for results using dilution techniques. Interpretation involves correlation of the diameter obtained in the disk test with the MIC for erythromycin.

As with standardized dilution techniques, diffusion methods require the use of laboratory control microorganisms that are used to control the technical aspects of the laboratory procedures. For the diffusion technique, the 15-μg erythromycin disk should provide the following zone diameters in these laboratory test quality control strains:

Microorganism Zone Diameter (mm)
S. aureus ATCC 25923 22-30
INDICATIONS AND USAGE

To reduce the development of drug-resistant bacteria and maintain the effectiveness of E.E.S. and other antibacterial drugs, E.E.S. should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to the empiric selection of therapy.

E.E.S. is indicated in the treatment of infections caused by susceptible strains of the designated organisms in the diseases listed below

Upper respiratory tract infections of mild to moderate degree caused by Streptococcus pyogenes, Streptococcus pneumoniae, or Haemophilus influenzae (when used concomitantly with adequate doses of sulfonamides, since many strains of H. influenzae are not susceptible to the erythromycin concentrations ordinarily achieved). (See appropriate sulfonamide labeling for prescribing information.)

Lower-respiratory tract infections of mild to moderate severity caused by Streptococcus pneumoniae or Streptococcus pyogenes.

Listeriosis caused by Listeria monocytogenes.

Pertussis (whooping cough) caused by Bordetella pertussis. Erythromycin is effective in eliminating the organism from the nasopharynx of infected individuals rendering them noninfectious. Some clinical studies suggest that erythromycin may be helpful in the prophylaxis of pertussis in exposed susceptible individuals.

Respiratory tract infections due to Mycoplasma pneumoniae .

Skin and skin structure infections of mild to moderate severity caused by Streptococcus pyogenes or Staphylococcus aureus (resistant staphylococci may emerge during treatment).

Diphtheria: Infections due to Corynebacterium diphtheriae , as an adjunct to antitoxin, to prevent establishment of carriers and to eradicate the organism in carriers.

Erythrasma: In the treatment of infections due to Corynebacterium minutissimum.

Intestinal amebiasis caused by Entamoeba histolytica (oral erythromycins only). Extraenteric amebiasis requires treatment with other agents. 

Acute pelvic inflammatory disease caused by Neisseria gonorrhoeae: As an alternative drug in treatment of acute pelvic inflammatory disease caused by N. gonorrhoeae in female patients with a history of sensitivity to penicillin. Patients should have a serologic test for syphilis before receiving erythromycin as treatment of gonorrhea and a follow-up serologic test for syphilis after 3 months.

Syphilis caused by Treponema pallidum: Erythromycin is an alternate choice of treatment for primary syphilis in patients allergic to the penicillins. In treatment of primary syphilis, spinal fluid examinations should be done before treatment and as part of follow-up after therapy.

Erythromycins are indicated for the treatment of the following infections caused by Chlamydia trachomatis: conjunctivitis of the newborn, pneumonia of infancy, and urogenital infections during pregnancy. When tetracyclines are contraindicated or not tolerated, erythromycin is indicated for the treatment of uncomplicated urethral, endocervical, or rectal infections in adults due to Chlamydia trachomatis.

When tetracyclines are contraindicated or not tolerated, erythromycin is indicated for the treatment of nongonococcal urethritis caused by Ureaplasma urealyticum.

Legionnaires' Disease caused by Legionella pneumophila. Although no controlled clinical efficacy studies have been conducted, in vitro and limited preliminary clinical data suggest that erythromycin may be effective in treating Legionnaires' Disease.

Prophylaxis

Prevention of Initial Attacks of Rheumatic Fever

Penicillin is considered by the American Heart Association to be the drug of choice in the prevention of initial attacks of rheumatic fever (treatment of Streptococcus pyogenes infections of the upper respiratory tract, e.g., tonsillitis or pharyngitis). Erythromycin is indicated for the treatment of penicillin-allergic patients.3 The therapeutic dose should be administered for 10 days.

Prevention of Recurrent Attacks of Rheumatic Fever

Penicillin or sulfonamides are considered by the American Heart Association to be the drugs of choice in the prevention of recurrent attacks of rheumatic fever. In patients who are allergic to penicillin and sulfonamides, oral erythromycin is recommended by the American Heart Association in the long-term prophylaxis of streptococcal pharyngitis (for the prevention of recurrent attacks of rheumatic fever).3

CONTRAINDICATIONS

Erythromycin is contraindicated in patients with known hypersensitivity to this antibiotic.

Erythromycin is contraindicated in patients taking terfenadine, astemizole, pimozide, or cisapride. (See PRECAUTIONS - Drug Interactions.)

WARNINGS

There have been reports of hepatic dysfunction, including increased liver enzymes, and hepatocellular and/or cholestatic hepatitis, with or without jaundice, occurring in patients receiving oral erythromycin products.

There have been reports suggesting that erythromycin does not reach the fetus in adequate concentration to prevent congenital syphilis. Infants born to women treated during pregnancy with oral erythromycin for early syphilis should be treated with an appropriate penicillin regimen.

Pseudomembranous colitis has been reported with nearly all antibacterial agents, including erythromycin, and may range in severity from mild to life threatening. Therefore, it is important to consider this diagnosis in patients who present with diarrhea subsequent to the administration of antibacterial agents.

Treatment with antibacterial agents alters the normal flora of the colon and may permit overgrowth of clostridia. Studies indicate that a toxin produced by Clostridium difficile is a primary cause of “antibiotic-associated colitis”.

After the diagnosis of pseudomembranous colitis has been established, therapeutic measures should be initiated. Mild cases of pseudomembranous colitis usually respond to discontinuation of the drug alone. In moderate to severe cases, consideration should be given to management with fluids and electrolytes, protein supplementation, and treatment with an antibacterial drug clinically effective against Clostridium difficile colitis.

Rhabdomyolysis with or without renal impairment has been reported in seriously ill patients receiving erythromycin concomitantly with lovastatin. Therefore, patients receiving concomitant lovastatin and erythromycin should be carefully monitored for creatine kinase (CK) and serum transaminase levels. (See package insert for lovastatin.)

PRECAUTIONS

General

Prescribing E.E.S. in the absence of a proven or strongly suspected bacterial infection or a prophylactic indication is unlikely to provide benefit to the patient and increases the risk of the development of drug-resistant bacteria.

Since erythromycin is principally excreted by the liver, caution should be exercised when erythromycin is administered to patients with impaired hepatic function. (See CLINICAL PHARMACOLOGY and WARNINGS sections.)

Exacerbation of symptoms of myasthenia gravis and new onset of symptoms of myasthenic syndrome has been reported in patients receiving erythromycin therapy.

There have been reports of infantile hypertrophic pyloric stenosis (IHPS) occurring in infants following erythromycin therapy. In one cohort of 157 newborns who were given erythromycin for pertussis prophylaxis, seven neonates (5%) developed symptoms of non-bilious vomiting or irritability with feeding and were subsequently diagnosed as having IHPS requiring surgical pyloromyotomy. A possible dose-response effect was described with an absolute risk of IHPS of 5.1% for infants who took erythromycin for 8-14 days and 10% for infants who took erythromycin for 15-21 days.4 Since erythromycin may be used in the treatment of conditions in infants which are associated with significant mortality or morbidity (such as pertussis or neonatal Chlamydia trachomatis infections), the benefit of erythromycin therapy needs to be weighed against the potential risk of developing IHPS. Parents should be informed to contact their physician if vomiting or irritability with feeding occurs.

Prolonged or repeated use of erythromycin may result in an overgrowth of nonsusceptible bacteria or fungi. If superinfection occurs, erythromycin should be discontinued and appropriate therapy instituted.

When indicated, incision and drainage or other surgical procedures should be performed in conjunction with antibiotic therapy.

Information for Patients

Patients should be counseled that antibacterial drugs including E.E.S. should only be used to treat bacterial infections. They do not treat viral infections (e.g., the common cold). When E.E.S. is prescribed to treat a bacterial infection, patients should be told that although it is common to feel better early in the course of therapy, the medication should be taken exactly as directed. Skipping doses or not completing the full course of therapy may (1) decrease the effectiveness of the immediate treatment and (2) increase the likelihood that bacteria will develop resistance and will not be treatable by E.E.S. or other antibacterial drugs in the future.

Drug Interactions

Erythromycin use in patients who are receiving high doses of theophylline may be associated with an increase in serum theophylline levels and potential theophylline toxicity. In case of theophylline toxicity and/or elevated serum theophylline levels, the dose of theophylline should be reduced while the patient is receiving concomitant erythromycin therapy.

Hypotension, bradyarrhythmias, and lactic acidosis have been observed in patients receiving concurrent verapamil, belonging to the calcium channel blockers drug class.

Concomitant administration of erythromycin and digoxin has been reported to result in elevated digoxin serum levels.

There have been reports of increased anticoagulant effects when erythromycin and oral anticoagulants were used concomitantly. Increased anticoagulation effects due to interactions of erythromycin with various oral anticoagulants may be more pronounced in the elderly.

Erythromycin is a substrate and inhibitor of the 3A isoform subfamily of the cytochrome p450 enzyme system (CYP3A). Coadministration of erythromycin and a drug primarily metabolized by CYP3A may be associated with elevations in drug concentrations that could increase or prolong both the therapeutic and adverse effects of the concomitant drug. Dosage adjustments may be considered, and when possible, serum concentrations of drugs primarily metabolized by CYP3A should be monitored closely in patients concurrently receiving erythromycin.

The following are examples of some clinically significant CYP3A based drug interactions. Interactions with other drugs metabolized by the CYP3A isoform are also possible. The following CYP3A based drug interactions have been observed with erythromycin products in post-marketing experience:

Ergotamine/dihydroergotamine

Concurrent use of erythromycin and ergotamine or dihydroergotamine has been associated in some patients with acute ergot toxicity characterized by severe peripheral vasospasm and dysesthesia.

Triazolobenzodiazepines (such as triazolam and alprazolam) and related benzodiazepines

Erythromycin has been reported to decrease the clearance of triazolam and midazolam, and thus, may increase the pharmacologic effect of these benzodiazepines.

HMG-CoA Reductase Inhibitors

Erythromycin has been reported to increase concentrations of HMG-CoA reductase inhibitors (e.g., lovastatin and simvastatin). Rare reports of rhabdomyolysis have been reported in patients taking these drugs concomitantly.

Sildenafil (Viagra)

Erythromycin has been reported to increase the systemic exposure (AUC) of sildenafil. Reduction of sildenafil dosage should be considered. (See Viagra package insert.)

There have been spontaneous or published reports of CYP3A based interactions of erythromycin with cyclosporine, carbamazepine, tacrolimus, alfentanil, disopyramide, rifabutin, quinidine, methylprednisolone, cilostazol, vinblastine, and bromocriptine.

Concomitant administration of erythromycin with cisapride, pimozide, astemizole, or terfenadine is contraindicated. (See CONTRAINDICATIONS.)

In addition, there have been reports of interactions of erythromycin with drugs not thought to be metabolized by CYP3A, including hexobarbital, phenytoin, and valproate.

Erythromycin has been reported to significantly alter the metabolism of the nonsedating antihistamines terfenadine and astemizole when taken concomitantly. Rare cases of serious cardiovascular adverse events, including electrocardiographic QT/QTc interval prolongation, cardiac arrest, torsades de pointes, and other ventricular arrhythmias have been observed. (See CONTRAINDICATIONS.) In addition, deaths have been reported rarely with concomitant administration of terfenadine and erythromycin.

There have been post-marketing reports of drug interactions when erythromycin is co-administered with cisapride, resulting in QT prolongation, cardiac arrhythmias, ventricular tachycardia, ventricular fibrillation, and torsades de pointes, most likely due to inhibition of hepatic metabolism of cisapride by erythromycin. Fatalities have been reported. (See CONTRAINDICATIONS.)

Drug/Laboratory Test Interactions

Erythromycin interferes with the fluorometric determination of urinary catecholamines.

Carcinogenesis, Mutagenesis, Impairment of Fertility

Long-term (2-year) oral studies in rats with erythromycin ethylsuccinate and erythromycin base did not provide evidence of tumorigenicity. Mutagenicity studies have not been conducted. There was no apparent effect on male or female fertility in rats fed erythromycin (base) at levels up to 0.25% of diet.

Pregnancy

Teratogenic Effects

Pregnancy Category B

There is no evidence of teratogenicity or any other adverse effect on reproduction in female rats fed erythromycin base (up to 0.25% of diet) prior to and during mating, during gestation, and through weaning of two successive litters. There are, however, no adequate and well controlled studies in pregnant women. Because animal reproduction studies are not always predictive of human response, this drug should be used during pregnancy only if clearly needed.

Labor and Delivery

The effect of erythromycin on labor and delivery is unknown.

Nursing Mothers

Erythromycin is excreted in human milk. Caution should be exercised when erythromycin is administered to a nursing woman.

Pediatric Use

See INDICATIONS AND USAGE and DOSAGE AND ADMINISTRATION sections.

ADVERSE REACTIONS

The most frequent side effects of oral erythromycin preparations are gastrointestinal and are dose-related. They include nausea, vomiting, abdominal pain, diarrhea and anorexia. Symptoms of hepatitis, hepatic dysfunction and/or abnormal liver function test results may occur. (See WARNINGS.)

Onset of pseudomembranous colitis symptoms may occur during or after antibiotic treatment. (See WARNINGS.)

Erythromycin has been associated with QT prolongation and ventricular arrhythmias, including ventricular tachycardia and torsades de pointes.

Allergic reactions ranging from urticaria to anaphylaxis have occurred. Skin reactions ranging from mild eruptions to erythema multiforme, Stevens-Johnson syndrome, and toxic epidermal necrolysis have been reported rarely.

There have been rare reports of pancreatitis and convulsions.

There have been isolated reports of reversible hearing loss occurring chiefly in patients with renal insufficiency and in patients receiving high doses of erythromycin.

OVERDOSAGE

In case of overdosage, erythromycin should be discontinued. Overdosage should be handled with the prompt elimination of unabsorbed drug and all other appropriate measures should be instituted.

Erythromycin is not removed by peritoneal dialysis or hemodialysis.

DOSAGE AND ADMINISTRATION

Erythromycin ethylsuccinate suspensions and Filmtab tablets may be administered without regard to meals.

Children

Age, weight, and severity of the infection are important factors in determining the proper dosage. In mild to moderate infections the usual dosage of erythromycin ethylsuccinate for children is 30 to 50 mg/kg/day in equally divided doses every 6 hours. For more severe infections this dosage may be doubled. If twice-a-day dosage is desired, one-half of the total daily dose may be given every 12 hours. Doses may also be given three times daily by administering one-third of the total daily dose every 8 hours.

The following dosage schedule is suggested for mild to moderate infections:

Body Weight Total Daily Dose
Under 10 lbs 30-50 mg/kg/day
15-25 mg/kg/q 12 h
10 to 15 lbs 200 mg
16 to 25 lbs 400 mg
26 to 50 lbs 800 mg
51 to 100 lbs 1200 mg
over 100 lbs 1600 mg
Adults

400 mg erythromycin ethylsuccinate every 6 hours is the usual dose. Dosage may be increased up to 4 g per day according to the severity of the infection. If twice-a-day dosage is desired, one-half of the total daily dose may be given every 12 hours. Doses may also be given three times daily by administering one-third of the total daily dose every 8 hours.

For adult dosage calculation, use a ratio of 400 mg of erythromycin activity as the ethylsuccinate to 250 mg of erythromycin activity as the stearate, base or estolate.

In the treatment of streptococcal infections, a therapeutic dosage of erythromycin ethylsuccinate should be administered for at least 10 days. In continuous prophylaxis against recurrences of streptococcal infections in persons with a history of rheumatic heart disease, the usual dosage is 400 mg twice a day.

For Treatment of Urethritis Due to C. trachomatis or U. urealyticum

800 mg three times a day for 7 days.

For Treatment of Primary Syphilis

Adults: 48 to 64 g given in divided doses over a period of 10 to 15 days.

For Intestinal Amebiasis

Adults

400 mg four times daily for 10 to 14 days.

Children

30 to 50 mg/kg/day in divided doses for 10 to 14 days.

For Use in Pertussis

Although optimal dosage and duration have not been established, doses of erythromycin utilized in reported clinical studies were 40 to 50 mg/kg/day, given in divided doses for 5 to 14 days.

For Treatment of Legionnaires' Disease

Although optimal doses have not been established, doses utilized in reported clinical data were those recommended above (1.6 to 4 g daily in divided doses.)

HOW SUPPLIED

E.E.S. 200 LIQUID (erythromycin ethylsuccinate oral suspension, USP) is supplied in 1 pint bottles (NDC 0074-6306-16) and in 100-mL bottles (NDC 0074-6306-13).

E.E.S. 400® LIQUID (erythromycin ethylsuccinate oral suspension, USP) is supplied in 1 pint bottles (NDC 0074-6373-16) and in 100-mL bottles (NDC 0074-6373-13).

Both liquid products require refrigeration to preserve taste until dispensed. Refrigeration by patient is not required if used within 14 days.

E.E.S. GRANULES (erythromycin ethylsuccinate for oral suspension, USP) is supplied in 100-mL (NDC 0074-6369-02) and 200-mL (NDC 0074-6369-10) size bottles.

E.E.S. 400 Filmtab tablets (erythromycin ethylsuccinate tablets, USP) 400 mg, are supplied as pink tablets imprinted with the Abbott “A” logo, and two letter Abbo-Code designation, EE, in bottles of 100 (NDC 0074-5729-13), 500 (NDC 0074-5729-53) and 1000 (NDC 0074-5729-19) and in ABBO-PAC unit dose strip packages of 100 (NDC  0074-5729-11).

Recommended storage

Store tablets below 86°F (30°C).

Store granules, prior to mixing, below 86°F (30°C). After mixing, refrigerate and use within 10 days.
---------------------------------------------
产地国家: 美国
原产地英文商品名:
E.E.S 200mg/5ml granules for oral suspension
原产地英文药品名:
ERYTHROMYCIN ETHYLSUCCINATE
中文参考商品译名:
E.E.S 200毫克/5毫升干混悬剂
中文参考药品译名:
琥乙红霉素
生产厂家英文名:
ARBOR PHARMS INC

责任编辑:admin


相关文章
FDA批准Teflaro用于治疗细菌感染的针剂
红霉素&磺胺异恶唑悬浮口服液|Pediazole(erythromycin/sulfisoxazol Reconstitution Suspension)
 

最新文章

更多

· VICCILLIN-S FOR INJECT...
· VICCILLIN-S COMBINATIO...
· Clarith(克拉霉素小児用...
· Flucloxacillin Solutio...
· 琥乙红霉素干混悬剂|E.E...
· ANAEMETRO Intravenous ...
· 利福昔明片|XIFAXANTA(R...
· Orbactiv(oritavancin)注...
· Sivextro(tedizolid 磷酸酯)
· ACETYLSPIRAMYCIN(乙酰螺...

推荐文章

更多

· VICCILLIN-S FOR INJECT...
· VICCILLIN-S COMBINATIO...
· Clarith(克拉霉素小児用...
· Flucloxacillin Solutio...
· 琥乙红霉素干混悬剂|E.E...
· ANAEMETRO Intravenous ...
· 利福昔明片|XIFAXANTA(R...
· Orbactiv(oritavancin)注...
· Sivextro(tedizolid 磷酸酯)
· ACETYLSPIRAMYCIN(乙酰螺...

热点文章

更多