部份中文氢氯吡格雷处方资料(仅供参考取) 【分子量】419.91
Reporting of suspected adverse reactions Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via Yellow Card Scheme at: www.mhra.gov.uk/yellowcard 4.9 Overdose Overdose following clopidogrel administration may lead to prolonged bleeding time and subsequent bleeding complications. Appropriate therapy should be considered if bleedings are observed. No antidote to the pharmacological activity of clopidogrel has been found. If prompt correction of prolonged bleeding time is required, platelet transfusion may reverse the effects of clopidogrel. 5. Pharmacological properties 5.1 Pharmacodynamic properties Pharmacotherapeutic group: platelet aggregation inhibitors excl. heparin, ATC Code: B01AC-04. Mechanism of action Clopidogrel is a prodrug, one of whose metabolites is an inhibitor of platelet aggregation. Clopidogrel must be metabolised by CYP450 enzymes to produce the active metabolite that inhibits platelet aggregation. The active metabolite of clopidogrel selectively inhibits the binding of adenosine diphosphate (ADP) to its platelet P2Y12 receptor and the subsequent ADP-mediated activation of the glycoprotein GPIIb/IIIa complex, thereby inhibiting platelet aggregation. Due to the irreversible binding, platelets exposed are affected for the remainder of their lifespan (approximately 7-10 days) and recovery of normal platelet function occurs at a rate consistent with platelet turnover. Platelet aggregation induced by agonists other than ADP is also inhibited by blocking the amplification of platelet activation by released ADP. Because the active metabolite is formed by CYP450 enzymes, some of which are polymorphic or subject to inhibition by other medicinal products, not all patients will have adequate platelet inhibition. Pharmacodynamic effects Repeated doses of 75 mg per day produced substantial inhibition of ADP-induced platelet aggregation from the first day; this increased progressively and reached steady state between Day 3 and Day 7. At steady state, the average inhibition level observed with a dose of 75 mg per day was between 40% and 60%. Platelet aggregation and bleeding time gradually returned to baseline values, generally within 5 days after treatment was discontinued. Clinical efficacy and safety The safety and efficacy of clopidogrel have been evaluated in 5 double-blind studies involving over 88,000 patients: the CAPRIE study, a comparison of clopidogrel to ASA, and the CURE, CLARITY, COMMIT and ACTIVE-A studies comparing clopidogrel to placebo, both medicinal products given in combination with ASA and other standard therapy. Recent myocardial infarction (MI), recent stroke or established peripheral arterial disease The CAPRIE study included 19,185 patients with atherothrombosis as manifested by recent myocardial infarction (<35 days), recent ischaemic stroke (between 7 days and 6 months) or established peripheral arterial disease (PAD). Patients were randomised to clopidogrel 75 mg/day or ASA 325 mg/day, and were followed for 1 to 3 years. In the myocardial infarction subgroup, most of the patients received ASA for the first few days following the acute myocardial infarction. Clopidogrel significantly reduced the incidence of new ischaemic events (combined end point of myocardial infarction, ischaemic stroke and vascular death) when compared to ASA. In the intention to treat analysis, 939 events were observed in the clopidogrel group and 1,020 events with ASA (relative risk reduction (RRR) 8.7%, [95% CI: 0.2 to 16.4]; p=0.045), which corresponds, for every 1,000 patients treated for 2 years, to 10 [CI: 0 to 20] additional patients being prevented from experiencing a new ischaemic event. Analysis of total mortality as a secondary endpoint did not show any significant difference between clopidogrel (5.8%) and ASA (6.0%). In a subgroup analysis by qualifying condition (myocardial infarction, ischaemic stroke, and PAD) the benefit appeared to be strongest (achieving statistical significance at p=0.003) in patients enrolled due to PAD (especially those who also had a history of myocardial infarction) (RRR = 23.7%; CI: 8.9 to 36.2) and weaker (not significantly different from ASA) in stroke patients (RRR = 7.3%; CI: -5.7 to 18.7 [p=0.258]). In patients who were enrolled in the trial on the sole basis of a recent myocardial infarction, clopidogrel was numerically inferior, but not statistically different from ASA (RRR = -4.0%; CI: -22.5 to 11.7 [p=0.639]). In addition, a subgroup analysis by age suggested that the benefit of clopidogrel in patients over 75 years was less than that observed in patients ≤75 years. Since the CAPRIE trial was not powered to evaluate efficacy of individual subgroups, it is not clear whether the differences in relative risk reduction across qualifying conditions are real, or a result of chance. Acute coronary syndrome The CURE study included 12,562 patients with non-ST segment elevation acute coronary syndrome (unstable angina or non-Q-wave myocardial infarction), and presenting within 24 hours of onset of the most recent episode of chest pain or symptoms consistent with ischaemia. Patients were required to have either ECG changes compatible with new ischaemia or elevated cardiac enzymes or troponin I or T to at least twice the upper limit of normal. Patients were randomised to clopidogrel (300 mg loading dose followed by 75 mg/day, N=6,259) or placebo (N=6,303), both given in combination with ASA (75-325 mg once daily) and other standard therapies. Patients were treated for up to one year. In CURE, 823 (6.6%) patients received concomitant GPIIb/IIIa receptor antagonist therapy. Heparins were administered in more than 90% of the patients and the relative rate of bleeding between clopidogrel and placebo was not significantly affected by the concomitant heparin therapy. The number of patients experiencing the primary endpoint [cardiovascular (CV) death, myocardial infarction (MI), or stroke] was 582 (9.3%) in the clopidogrel-treated group and 719 (11.4%) in the placebo-treated group, a 20% relative risk reduction (95% CI of 10%-28%; p=0.00009) for the clopidogrel-treated group (17% relative risk reduction when patients were treated conservatively, 29% when they underwent percutaneous transluminal coronary angioplasty (PTCA) with or without stent and 10% when they underwent coronary artery bypass graft (CABG)). New cardiovascular events (primary endpoint) were prevented, with relative risk reductions of 22% (CI: 8.6, 33.4), 32% (CI: 12.8, 46.4), 4% (CI: -26.9, 26.7), 6% (CI: -33.5, 34.3) and 14% (CI: -31.6, 44.2), during the 0-1, 1-3, 3-6, 6-9 and 9-12 month study intervals, respectively. Thus, beyond 3 months of treatment, the benefit observed in the clopidogrel + ASA group was not further increased, whereas the risk of haemorrhage persisted (see section 4.4). The use of clopidogrel in CURE was associated with a decrease in the need of thrombolytic therapy (RRR = 43.3%; CI: 24.3%, 57.5%) and GPIIb/IIIa inhibitors (RRR = 18.2%; CI: 6.5%, 28.3%). The number of patients experiencing the co-primary endpoint (CV death, MI, stroke or refractory ischaemia) was 1,035 (16.5%) in the clopidogrel-treated group and 1,187 (18.8%) in the placebo-treated group, a 14% relative risk reduction (95% CI of 6%-21%, p=0.0005) for the clopidogrel-treated group. This benefit was mostly driven by the statistically significant reduction in the incidence of MI [287 (4.6%) in the clopidogrel treated group and 363 (5.8%) in the placebo treated group]. There was no observed effect on the rate of rehospitalisation for unstable angina. The results obtained in populations with different characteristics (e.g. unstable angina or non-Q-wave MI, low to high risk levels, diabetes, need for revascularisation, age, gender, etc.) were consistent with the results of the primary analysis. In particular, in a post-hoc analysis in 2,172 patients (17% of the total CURE population) who underwent stent placement (Stent-CURE), the data showed that clopidogrel compared to placebo, demonstrated a significant RRR of 26.2% favouring clopidogrel for the co-primary endpoint (CV death, MI, stroke) and also a significant RRR of 23.9% for the second co-primary endpoint (CV death, MI, stroke or refractory ischaemia). Moreover, the safety profile of clopidogrel in this subgroup of patients did not raise any particular concern. Thus, the results from this subset are in line with the overall trial results. The benefits observed with clopidogrel were independent of other acute and long-term cardiovascular therapies (such as heparin/LMWH, GPIIb/IIIa antagonists, lipid lowering medicinal products, beta blockers, and ACE-inhibitors). The efficacy of clopidogrel was observed independently of the dose of ASA (75-325 mg once daily). In patients with acute ST-segment elevation MI, safety and efficacy of clopidogrel have been evaluated in 2 randomised, placebo-controlled, double-blind studies, CLARITY and COMMIT. The CLARITY trial included 3,491 patients presenting within 12 hours of the onset of a ST elevation MI and planned for thrombolytic therapy. Patients received clopidogrel (300 mg loading dose, followed by 75 mg/day, n=1,752) or placebo (n=1,739), both in combination with ASA (150 to 325 mg as a loading dose, followed by 75 to 162 mg/day), a fibrinolytic agent and, when appropriate, heparin. The patients were followed for 30 days. The primary endpoint was the occurrence of the composite of an occluded infarct-related artery on the predischarge angiogram, or death or recurrent MI before coronary angiography. For patients who did not undergo angiography, the primary endpoint was death or recurrent myocardial infarction by Day 8 or by hospital discharge. The patient population included 19.7% women and 29.2% patients ≥ 65 years. A total of 99.7% of patients received fibrinolytics (fibrin specific: 68.7%, non-fibrin specific: 31.1%), 89.5% heparin, 78.7% beta blockers, 54.7% ACE inhibitors and 63% statins. Fifteen percent (15.0%) of patients in the clopidogrel group and 21.7% in the placebo group reached the primary endpoint, representing an absolute reduction of 6.7% and a 36 % odds reduction in favor of clopidogrel (95% CI: 24, 47%; p < 0.001), mainly related to a reduction in occluded infarct-related arteries. This benefit was consistent across all prespecified subgroups including patients' age and gender, infarct location, and type of fibrinolytic or heparin used. The 2x2 factorial design COMMIT trial included 45,852 patients presenting within 24 hours of the onset of the symptoms of suspected MI with supporting ECG abnormalities (i.e. ST elevation, ST depression or left bundle-branch block). Patients received clopidogrel (75 mg/day, n=22,961) or placebo (n=22,891), in combination with ASA (162 mg/day), for 28 days or until hospital discharge. The co-primary endpoints were death from any cause and the first occurrence of re-infarction, stroke or death. The population included 27.8% women, 58.4% patients ≥ 60 years (26% ≥ 70 years) and 54.5% patients who received fibrinolytics. Clopidogrel significantly reduced the relative risk of death from any cause by 7% (p=0.029), and the relative risk of the combination of re-infarction, stroke or death by 9% (p=0.002), representing an absolute reduction of 0.5% and 0.9%, respectively. This benefit was consistent across age, gender and with or without fibrinolytics, and was observed as early as 24 hours. Atrial fibrillation The ACTIVE-W and ACTIVE-A studies, separate trials in the ACTIVE program, included patients with atrial fibrillation (AF) who had at least one risk factor for vascular events. Based on enrollment criteria, physicians enrolled patients in ACTIVE-W if they were candidates for vitamin K antagonist (VKA) therapy (such as warfarin). The ACTIVE-A study included patients who could not receive VKA therapy because they were unable or unwilling to receive the treatment. The ACTIVE-W study demonstrated that anticoagulant treatment with vitamin K antagonists was more effective than with clopidogrel and ASA. The ACTIVE-A study (N=7,554) was a multicenter, randomized, double-blind, placebo-controlled study which compared clopidogrel 75 mg/day + ASA (N=3,772) to placebo + ASA (N=3,782). The recommended dose for ASA was 75 to 100 mg/day. Patients were treated for up to 5 years. Patients randomized in the ACTIVE program were those presenting with documented AF, i.e., either permanent AF or at least 2 episodes of intermittent AF in the past 6 months, and had at least one of the following risk factors: age ≥75 years or age 55 to 74 years and either diabetes mellitus requiring drug therapy, or documented previous MI or documented coronary artery disease; treated for systemic hypertension; prior stroke, transient ischaemic attack (TIA), or non-CNS systemic embolus; left ventricular dysfunction with left ventricular ejection fraction <45%; or documented peripheral vascular disease. The mean CHADS2 score was 2.0 (range 0-6). The major exclusion criteria for patients were documented peptic ulcer disease within the previous 6 months; prior intracerebral hemorrhage; significant thrombocytopenia (platelet count < 50 x 109/l); requirement for clopidogrel or oral anticoagulants (OAC); or intolerance to any of the two compounds. Seventy-three percent (73%) of patients enrolled into the ACTIVE-A study were unable to take VKA due to physician assessment, inability to comply with INR (international normalised ratio) monitoring, predisposition to falling or head trauma, or specific risk of bleeding; for 26% of the patients, the physician's decision was based on the patient's unwillingness to take VKA. The patient population included 41.8 % women. The mean age was 71 years, 41.6% of patients were ≥75 years. A total of 23.0% of patients received anti-arrhythmics, 52.1% beta-blockers, 54.6% ACE inhibitors, and 25.4% statins. The number of patients who reached the primary endpoint (time to first occurrence of stroke, MI, non-CNS systemic embolism or vascular death) was 832 (22.1%) in the group treated with clopidogrel + ASA and 924 (24.4%) in the placebo + ASA group (relative risk reduction of 11.1%; 95% CI of 2.4% to 19.1%; p=0.013), primarily due to a large reduction in the incidence of strokes. Strokes occurred in 296 (7.8%) patients receiving clopidogrel + ASA and 408 (10.8%) patients receiving placebo + ASA (relative risk reduction, 28.4%; 95% CI, 16.8% to 38.3%; p=0.00001). Paediatric population In a dose escalation study of 86 neonates or infants up to 24 months of age at risk for thrombosis (PICOLO), clopidogrel was evaluated at consecutive doses of 0.01, 0.1 and 0.2 mg/kg in neonates and infants and 0.15 mg/kg only in neonates. The dose of 0.2 mg/kg achieved the mean percent inhibition of 49.3% (5 µM ADP-induced platelet aggregation) which was comparable to that of adults taking Plavix 75 mg/day. In a randomised, double-blind, parallel-group study (CLARINET), 906 paediatric patients (neonates and infants) with cyanotic congenital heart disease palliated with a systemic-to-pulmonary arterial shunt were randomised to receive clopidogrel 0.2 mg/kg (n=467) or placebo (n=439) along with concomitant background therapy up to the time of second stage surgery. The mean time between shunt palliation and first administration of study medicinal product was 20 days. Approximately 88% of patients received concomitant ASA (range of 1 to 23 mg/kg/day). There was no significant difference between groups in the primary composite endpoint of death, shunt thrombosis or cardiac-related intervention prior to 120 days of age following an event considered of thrombotic nature (89 [19.1%] for the clopidogrel group and 90 [20.5%] for the placebo group) (see section 4.2). Bleeding was the most frequently reported adverse reaction in both clopidogrel and placebo groups; however, there was no significant difference in the bleeding rate between groups. In the long-term safety follow-up of this study, 26 patients with the shunt still in place at one year of age received clopidogrel up to 18 months of age. No new safety concerns were noted during this long-term follow-up. The CLARINET and the PICOLO trials were conducted using a constituted solution of clopidogrel. In a relative bioavailability study in adults, the constituted solution of clopidogrel showed a similar extent and slightly higher rate of absorption of the main circulating (inactive) metabolite compared to the authorised tablet. 5.2 Pharmacokinetic properties Absorption After single and repeated oral doses of 75 mg per day, clopidogrel is rapidly absorbed. Mean peak plasma levels of unchanged clopidogrel (approximately 2.2-2.5 ng/ml after a single 75 mg oral dose) occurred approximately 45 minutes after dosing. Absorption is at least 50%, based on urinary excretion of clopidogrel metabolites. Distribution Clopidogrel and the main circulating (inactive) metabolite bind reversibly in vitro to human plasma proteins (98% and 94% respectively). The binding is non-saturable in vitro over a wide concentration range. Biotransformation Clopidogrel is extensively metabolised by the liver. In vitro and in vivo, clopidogrel is metabolised according to two main metabolic pathways: one mediated by esterases and leading to hydrolysis into its inactive carboxylic acid derivative (85% of circulating metabolites), and one mediated by multiple cytochromes P450. Clopidogrel is first metabolised to a 2-oxo-clopidogrel intermediate metabolite. Subsequent metabolism of the 2-oxo-clopidogrel intermediate metabolite results in formation of the active metabolite, a thiol derivative of clopidogrel. In vitro, this metabolic pathway is mediated by CYP3A4, CYP2C19, CYP1A2 and CYP2B6. The active thiol metabolite which has been isolated in vitro, binds rapidly and irreversibly to platelet receptors, thus inhibiting platelet aggregation. The Cmax of the active metabolite is twice as high following a single 300-mg clopidogrel loading dose as it is after four days of 75-mg maintenance dose. Cmax occurs approximately 30 to 60 minutes after dosing. Elimination Following an oral dose of 14C-labelled clopidogrel in man, approximately 50% was excreted in the urine and approximately 46% in the faeces in the 120-hour interval after dosing. After a single oral dose of 75 mg, clopidogrel has a half-life of approximately 6 hours. The elimination half-life of the main circulating (inactive) metabolite was 8 hours after single and repeated administration. Pharmacogenetics CYP2C19 is involved in the formation of both the active metabolite and the 2-oxo-clopidogrel intermediate metabolite. Clopidogrel active metabolite pharmacokinetics and antiplatelet effects, as measured by ex vivo platelet aggregation assays, differ according to CYP2C19 genotype. The CYP2C19*1 allele corresponds to fully functional metabolism while the CYP2C19*2 and CYP2C19*3 alleles are nonfunctional. The CYP2C19*2 and CYP2C19*3 alleles account for the majority of reduced function alleles in Caucasian (85%) and Asian (99%) poor metabolisers. Other alleles associated with absent or reduced metabolism are less frequent and include CYP2C19*4, *5, *6, *7, and *8. A patient with poor metaboliser status will possess two loss-of-function alleles as defined above. Published frequencies for the poor CYP2C19 metaboliser genotypes are approximately 2% for Caucasians, 4% for Blacks and 14% for Chinese. Tests are available to determine a patient's CYP2C19 genotype. A crossover study in 40 healthy subjects, 10 each in the four CYP2C19 metaboliser groups (ultrarapid, extensive, intermediate and poor), evaluated pharmacokinetic and antiplatelet responses using 300 mg followed by 75 mg/day and 600 mg followed by 150 mg/day, each for a total of 5 days (steady state). No substantial differences in active metabolite exposure and mean inhibition of platelet aggregation (IPA) were observed between ultrarapid, extensive and intermediate metabolisers. In poor metabolisers, active metabolite exposure was decreased by 63-71% compared to extensive metabolisers. After the 300 mg/75 mg dose regimen, antiplatelet responses were decreased in the poor metabolisers with mean IPA (5 μM ADP) of 24% (24 hours) and 37% (Day 5) as compared to IPA of 39% (24 hours) and 58% (Day 5) in the extensive metabolisers and 37% (24 hours) and 60% (Day 5) in the intermediate metabolisers. When poor metabolisers received the 600 mg/150 mg regimen, active metabolite exposure was greater than with the 300 mg/75 mg regimen. In addition, IPA was 32% (24 hours) and 61% (Day 5), which were greater than in the poor metabolisers receiving the 300 mg/75 mg regimen, and were similar to the other CYP2C19 metaboliser groups receiving the 300 mg/75 mg regimen. An appropriate dose regimen for this patient population has not been established in clinical outcome trials. Consistent with the above results, in a meta-analysis including 6 studies of 335 clopidogrel-treated subjects at steady state, it was shown that active metabolite exposure was decreased by 28% for intermediate metabolisers, and 72% for poor metabolisers while platelet aggregation inhibition (5 μM ADP) was decreased with differences in IPA of 5.9% and 21.4%, respectively, when compared to extensive metabolisers. The influence of CYP2C19 genotype on clinical outcomes in patients treated with clopidogrel has not been evaluated in prospective, randomised, controlled trials. There have been a number of retrospective analyses, however, to evaluate this effect in patients treated with clopidogrel for whom there are genotyping results: CURE (n=2721), CHARISMA (n=2428), CLARITY-TIMI 28 (n=227), TRITON-TIMI 38 (n=1477), and ACTIVE-A (n=601), as well as a number of published cohort studies. In TRITON-TIMI 38 and 3 of the cohort studies (Collet, Sibbing, Giusti) the combined group of patients with either intermediate or poor metaboliser status had a higher rate of cardiovascular events (death, myocardial infarction, and stroke) or stent thrombosis compared to extensive metabolisers. In CHARISMA and one cohort study (Simon), an increased event rate was observed only in poor metabolisers when compared to extensive metabolisers. In CURE, CLARITY, ACTIVE-A and one of the cohort studies (Trenk), no increased event rate was observed based on metaboliser status. None of these analyses were adequately sized to detect differences in outcome in poor metabolisers. Special populations The pharmacokinetics of the active metabolite of clopidogrel is not known in these special populations. Renal impairment After repeated doses of 75 mg clopidogrel per day in subjects with severe renal disease (creatinine clearance from 5 to 15 ml/min), inhibition of ADP-induced platelet aggregation was lower (25%) than that observed in healthy subjects, however, the prolongation of bleeding time was similar to that seen in healthy subjects receiving 75 mg of clopidogrel per day. In addition, clinical tolerance was good in all patients. Hepatic impairment After repeated doses of 75 mg clopidogrel per day for 10 days in patients with severe hepatic impairment, inhibition of ADP-induced platelet aggregation was similar to that observed in healthy subjects. The mean bleeding time prolongation was also similar in the two groups. Race The prevalence of CYP2C19 alleles that result in intermediate and poor CYP2C19 metabolism differs according to race/ethnicity (see Pharmacogenetics). From literature, limited data in Asian populations are available to assess the clinical implication of genotyping of this CYP on clinical outcome events. 5.3 Preclinical safety data During non clinical studies in rat and baboon, the most frequently observed effects were liver changes. These occurred at doses representing at least 25 times the exposure seen in humans receiving the clinical dose of 75 mg/day and were a consequence of an effect on hepatic metabolising enzymes. No effect on hepatic metabolising enzymes was observed in humans receiving clopidogrel at the therapeutic dose. At very high doses, a poor gastric tolerability (gastritis, gastric erosions and/or vomiting) of clopidogrel was also reported in rat and baboon. There was no evidence of carcinogenic effect when clopidogrel was administered for 78 weeks to mice and 104 weeks to rats when given at doses up to 77 mg/kg per day (representing at least 25 times the exposure seen in humans receiving the clinical dose of 75 mg/day). Clopidogrel has been tested in a range of in vitro and in vivo genotoxicity studies, and showed no genotoxic activity. Clopidogrel was found to have no effect on the fertility of male and female rats and was not teratogenic in either rats or rabbits. When given to lactating rats, clopidogrel caused a slight delay in the development of the offspring. Specific pharmacokinetic studies performed with radiolabelled clopidogrel have shown that the parent compound or its metabolites are excreted in the milk. Consequently, a direct effect (slight toxicity), or an indirect effect (low palatability) cannot be excluded. 6. Pharmaceutical particulars 6.1 List of excipients Core: Mannitol (E421) Macrogol 6000 Microcrystalline cellulose Hydrogenated castor oil Low substituted hydroxypropylcellulose Coating: Hypromellose (E464) Lactose monohydrate Triacetin (E1518) Titanium dioxide (E171) Red iron oxide (E172) Polishing agent: Carnauba wax 6.2 Incompatibilities Not applicable 6.3 Shelf life 3 years 6.4 Special precautions for storage This medicinal product does not require any special storage conditions. 6.5 Nature and contents of container Aluminium perforated unit-dose blisters in cardboard cartons containing 4x1, 10x1, 30x1 and 100x1 film-coated tablets. Not all pack sizes may be marketed. 6.6 Special precautions for disposal and other handling Any unused medicinal product or waste material should be disposed of in accordance with local requirements. 7. Marketing authorisation holder Sanofi Clir SNC 54, rue La Boétie F-75008 Paris France 8. Marketing authorisation number(s) EU/1/98/069/009 - Cartons of 30x1 film-coated tablets in all aluminium perforated unit-dose blisters 9. Date of first authorisation/renewal of the authorisation Date of first authorisation: 15 July 1998 Date of latest renewal: 15 July 2008 10. Date of revision of the text 21 May 2015 Detailed information on this medicinal product is available on the website of the European Medicines Agency: http://www.ema.europa.eu/
|
Plavix(Clopidogrel Bisulfate filmcoated tablets)简介:
部份中文氢氯吡格雷处方资料(仅供参考取)【通用名称】Clopidogrel Bisulfate【中文译名】硫酸氢氯吡格雷【商标名称】Plavix【化学名称】S(+)-2-(2-氯苯基)-2-(4,5,6,7-四氢噻吩[3,2-c]并吡啶-5)乙酸甲 ... 责任编辑:admin |
最新文章更多推荐文章更多热点文章更多
|