英文药名:TRIZIVIR(abacavir sulfate/lamivudine/zidovudine)Tablets 中文药名:复方阿巴卡韦/拉米夫定/齐多夫定片 生产厂家:葛兰素史克
Laboratory Abnormalities Laboratory abnormalities in CNA3005 are listed in Table 2. Table 2. Treatment-emergent Laboratory Abnormalities (Grades 3/4) in CNA3005
In addition to adverse reactions in Tables 1 and 2, other adverse events observed in the expanded access program for abacavir were pancreatitis and increased GGT. 6.2 Postmarketing Experience The following adverse reactions have been identified during postmarketing use. Because these reactions are reported voluntarily from a population of unknown size, it is not always possible to reliably estimate their frequency or establish a causal relationship to drug exposure. Abacavir Cardiovascular: Myocardial infarction. Skin: Suspected Stevens‑Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) have been reported in patients receiving abacavir primarily in combination with medications known to be associated with SJS and TEN, respectively. Because of the overlap of clinical signs and symptoms between hypersensitivity to abacavir and SJS and TEN, and the possibility of multiple drug sensitivities in some patients, abacavir should be discontinued and not restarted in such cases. There have also been reports of erythema multiforme with abacavir use [see Adverse Reactions (6.1)]. Abacavir, Lamivudine, and/or Zidovudine Body as a Whole: Redistribution/accumulation of body fat [see Warnings and Precautions (5.8)]. Cardiovascular: Cardiomyopathy. Digestive: Stomatitis. Endocrine and Metabolic: Gynecomastia. Gastrointestinal: Anorexia and/or decreased appetite, abdominal pain, dyspepsia, oral mucosal pigmentation. General: Vasculitis, weakness. Hemic and Lymphatic: Aplastic anemia, anemia (including pure red cell aplasia and severe anemias progressing on therapy), lymphadenopathy, splenomegaly, thrombocytopenia. Hepatic: Lactic acidosis and hepatic steatosis [see Warnings and Precautions (5.4)], elevated bilirubin, elevated transaminases, posttreatment exacerbations of hepatitis B [see Warnings and Precautions (5.5)]. Hypersensitivity: Sensitization reactions (including anaphylaxis), urticaria. Musculoskeletal: Arthralgia, myalgia, muscle weakness, rhabdomyolysis. Nervous: Dizziness, paresthesia, peripheral neuropathy, seizures. Psychiatric: Insomnia and other sleep disorders. Respiratory: Abnormal breath sounds/wheezing. Skin: Alopecia, erythema multiforme, Stevens-Johnson syndrome. 7 DRUG INTERACTIONS 7.1 Abacavir Methadone In a trial of 11 HIV-1‑infected subjects receiving methadone‑maintenance therapy with 600 mg of ZIAGEN twice daily (twice the currently recommended dose), oral methadone clearance increased [see Clinical Pharmacology (12.3)]. This alteration will not result in a methadone dose modification in the majority of patients; however, an increased methadone dose may be required in a small number of patients. 7.2 Zidovudine Agents Antagonistic with Zidovudine Concomitant use of zidovudine with the following drugs should be avoided since an antagonistic relationship has been demonstrated in vitro: • Stavudine • Doxorubicine • Nucleoside analogues e.g., ribavirin Hematologic/Bone Marrow Suppressive/Cytotoxic Agents Coadministration with the following drugs may increase the hematologic toxicity of zidovudine: • Ganciclovir • Interferon alfa • Ribavirin • Other bone marrow suppressive or cytotoxic agents 8 USE IN SPECIFIC POPULATIONS 8.1 Pregnancy Pregnancy Category C There are no adequate and well-controlled studies of TRIZIVIR in pregnant women. Reproduction studies with abacavir, lamivudine, and zidovudine have been performed in animals (see Abacavir, Lamivudine, and Zidovudine sections below). TRIZIVIR should be used during pregnancy only if the potential benefits outweigh the risks. Pregnancy Exposure Registry There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to TRIZIVIR during pregnancy. Physicians are encouraged to register patients by calling the Antiretroviral Pregnancy Registry at 1-800-258-4263. Abacavir Studies in pregnant rats showed that abacavir is transferred to the fetus through the placenta. Fetal malformations (increased incidences of fetal anasarca and skeletal malformations) and developmental toxicity (depressed fetal body weight and reduced crown-rump length) were observed in rats at a dose which produced 35 times the human exposure, based on AUC. Embryonic and fetal toxicities (increased resorptions, decreased fetal body weights) and toxicities to the offspring (increased incidence of stillbirth and lower body weights) occurred at half of the above-mentioned dose in separate fertility studies conducted in rats. In the rabbit, no developmental toxicity and no increases in fetal malformations occurred at doses that produced 8.5 times the human exposure at the recommended dose based on AUC. Lamivudine Studies in pregnant rats showed that lamivudine is transferred to the fetus through the placenta. Reproduction studies with orally administered lamivudine have been performed in rats and rabbits at doses producing plasma levels up to approximately 35 times that for the recommended adult HIV dose. No evidence of teratogenicity due to lamivudine was observed. Evidence of early embryolethality was seen in the rabbit at exposure levels similar to those observed in humans, but there was no indication of this effect in the rat at exposure levels up to 35 times those in humans. Zidovudine Reproduction studies with orally administered zidovudine in the rat and in the rabbit at doses up to 500 mg per kg per day revealed no evidence of teratogenicity with zidovudine. Zidovudine treatment resulted in embryo/fetal toxicity as evidenced by an increase in the incidence of fetal resorptions in rats given 150 or 450 mg per kg per day and rabbits given 500 mg per kg per day. The doses used in the teratology studies resulted in peak zidovudine plasma concentrations (after one-half of the daily dose) in rats 66 to 226 times, and in rabbits 12 to 87 times, mean steady-state peak human plasma concentrations (after one-sixth of the daily dose) achieved with the recommended daily dose (100 mg every 4 hours). In an additional teratology study in rats, a dose of 3,000 mg per kg per day (very near the oral median lethal dose in rats of approximately 3,700 mg per kg) caused marked maternal toxicity and an increase in the incidence of fetal malformations. This dose resulted in peak zidovudine plasma concentrations 350 times peak human plasma concentrations. No evidence of teratogenicity was seen in this experiment at doses of 600 mg per kg per day or less. Two rodent carcinogenicity studies were conducted [see Nonclinical Toxicology (13.1)]. 8.2 Lactation The Centers for Disease Control and Prevention recommend that HIV‑1-infected mothers in the United States not breastfeed their infants to avoid risking postnatal transmission of HIV-1 infection. Because of the potential for HIV‑1 transmission mothers should be instructed not to breastfeed. 8.4 Pediatric Use TRIZIVIR is not recommended in children who weigh less than 40 kg because it is a fixed‑dose tablet that cannot be adjusted for these patient populations [see Dosage and Administration (2.2)]. Therapy-Experienced Pediatric Trial A randomized, double-blind trial, CNA3006, compared ZIAGEN plus lamivudine and zidovudine versus lamivudine and zidovudine in pediatric subjects, most of whom were extensively pretreated with nucleoside analogue antiretroviral agents. Subjects in this trial had a limited response to abacavir. 8.5 Geriatric Use Clinical trials of abacavir, lamivudine, and zidovudine did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. In general, caution should be exercised in the administration of TRIZIVIR in elderly patients reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy [see Clinical Pharmacology (12.3)]. 8.6 Patients with Impaired Renal Function TRIZIVIR is not recommended for patients with creatinine clearance less than 50 mL per min because TRIZIVIR is a fixed‑dose combination and the dosage of the individual components cannot be adjusted. If a dose reduction of the lamivudine or zidovudine components of TRIZIVIR is required for patients with renal impairment then the individual components should be used [see Dosage and Administration (2.3), Clinical Pharmacology (12.3)]. 8.7 Patients with Impaired Hepatic Function TRIZIVIR is a fixed‑dose combination and the dosage of the individual components cannot be adjusted. If a dose reduction of abacavir, a component of TRIZIVIR, is required for patients with mild hepatic impairment (Child-Pugh Class A), then the individual components should be used [see Clinical Pharmacology (12.3)]. The safety, efficacy, and pharmacokinetic properties of abacavir have not been established in patients with moderate (Child-Pugh Class B) or severe (Child-Pugh Class C) hepatic impairment; therefore, TRIZIVIR is contraindicated in these patients [see Contraindications (4)]. Zidovudine is primarily eliminated by hepatic metabolism and zidovudine concentrations are increased in patients with impaired hepatic function, which may increase the risk of hematologic toxicity. Frequent monitoring of hematologic toxicities is advised. 10 OVERDOSAGE There is no known specific treatment for overdose with TRIZIVIR. If overdose occurs, the patient should be monitored and standard supportive treatment applied as required. Abacavir: It is not known whether abacavir can be removed by peritoneal dialysis or hemodialysis. Lamivudine: Because a negligible amount of lamivudine was removed via (4-hour) hemodialysis, continuous ambulatory peritoneal dialysis, and automated peritoneal dialysis, it is not known if continuous hemodialysis would provide clinical benefit in a lamivudine overdose event. Zidovudine: Acute overdoses of zidovudine have been reported in pediatric patients and adults. These involved exposures up to 50 grams. No specific symptoms or signs have been identified following acute overdosage with zidovudine apart from those listed as adverse events such as fatigue, headache, vomiting, and occasional reports of hematological disturbances. Patients recovered without permanent sequelae. Hemodialysis and peritoneal dialysis appear to have a negligible effect on the removal of zidovudine, while elimination of its primary metabolite, 3′-azido-3′-deoxy-5′-O-β-D-glucopyranuronosylthymidine (GZDV), is enhanced. 11 DESCRIPTION TRIZIVIR tablets contain the following 3 synthetic nucleoside analogues: abacavir (ZIAGEN), lamivudine (also known as EPIVIR or 3TC), and zidovudine (also known as RETROVIR, azidothymidine, or ZDV) with inhibitory activity against HIV-1. TRIZIVIR tablets are for oral administration. Each film-coated tablet contains the active ingredients 300 mg of abacavir as abacavir sulfate, 150 mg of lamivudine, and 300 mg of zidovudine, and the inactive ingredients magnesium stearate, microcrystalline cellulose, and sodium starch glycolate. The tablets are coated with a film (OPADRY® green 03B11434) that is made of FD&C Blue No. 2, hypromellose, polyethylene glycol, titanium dioxide, and yellow iron oxide. Abacavir Sulfate: The chemical name of abacavir sulfate is (1S,cis)-4-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1-methanol sulfate (salt) (2:1). Abacavir sulfate is the enantiomer with 1S, 4R absolute configuration on the cyclopentene ring. It has a molecular formula of (C14H18N6O)2•H2SO4 and a molecular weight of 670.76 g per mol. It has the following structural formula:
Administration with food in a single-dose bioavailability trial resulted in lower Cmax, similar to results observed previously for the reference formulations. The average [90% CI] decrease in abacavir, lamivudine, and zidovudine Cmax was 32% [24% to 38%], 18% [10% to 25%], and 28% [13% to 40%], respectively, when administered with a high-fat meal, compared with administration under fasted conditions. Administration of TRIZIVIR with food did not alter the extent of abacavir, lamivudine, and zidovudine absorption (AUC), as compared with administration under fasted conditions (n = 24) [see Dosage and Administration (2.1)]. Special Populations Renal Impairment:TRIZIVIR: The effect of renal impairment on the combination of abacavir, lamivudine, and zidovudine has not been evaluated (see the U.S. prescribing information for the individual abacavir, lamivudine, and zidovudine components). Hepatic Impairment:TRIZIVIR: The effect of hepatic impairment on the combination of abacavir, lamivudine, and zidovudine has not been evaluated (see the U.S. prescribing information for the individual abacavir, lamivudine, and zidovudine components). Pregnancy: Abacavir: No data are available on the pharmacokinetics of abacavir during pregnancy. Lamivudine: Lamivudine pharmacokinetics were studied in 36 pregnant women during 2 clinical trials conducted in South Africa. Lamivudine pharmacokinetics in pregnant women were similar to those seen in non-pregnant adults and in postpartum women. Lamivudine concentrations were generally similar in maternal, neonatal, and umbilical cord serum samples. Zidovudine: Zidovudine pharmacokinetics have been studied in a Phase 1 trial of 8 women during the last trimester of pregnancy. Zidovudine pharmacokinetics were similar to those of nonpregnant adults. Consistent with passive transmission of the drug across the placenta, zidovudine concentrations in neonatal plasma at birth were essentially equal to those in maternal plasma at delivery. Although data are limited, methadone maintenance therapy in 5 pregnant women did not appear to alter zidovudine pharmacokinetics. Geriatric Patients: The pharmacokinetics of abacavir, lamivudine, and zidovudine have not been studied in subjects over 65 years of age. Gender: There are no significant or clinically relevant gender differences in the pharmacokinetics of the individual components (abacavir, lamivudine, or zidovudine) based on the available information that was analyzed for each of the individual components. Race: Abacavir and Lamivudine: There are no significant or clinically relevant racial differences in pharmacokinetics of abacavir or lamivudine based on the available information that was analyzed for each of the individual components. Zidovudine: The pharmacokinetics of zidovudine with respect to race have not been determined. Drug Interactions The drug interaction trials described were conducted with abacavir, lamivudine or zidovudine as single entities; no drug interaction trials have been conducted using TRIZIVIR. No clinically significant drug interactions are expected between abacavir, lamivudine, and zidovudine. Cytochrome P450 Enzymes: Abacavir, lamivudine, and zidovudine are not significantly metabolized by cytochrome P450 enzymes; therefore, it is unlikely that clinically significant drug interactions will occur with drugs metabolized through these pathways. Glucuronyl Transferase: Due to the common metabolic pathways of abacavir and zidovudine via glucuronyl transferase, 15 HIV‑1‑infected subjects were enrolled in a crossover trial evaluating single doses of abacavir (600 mg), lamivudine (150 mg), and zidovudine (300 mg) alone or in combination. Analysis showed no clinically relevant changes in the pharmacokinetics of abacavir with the addition of lamivudine or zidovudine or the combination of lamivudine and zidovudine. Lamivudine exposure (AUC decreased 15%) and zidovudine exposure (AUC increased 10%) did not show clinically relevant changes with concurrent abacavir. Other Interactions Ethanol: Abacavir has no effect on the pharmacokinetic properties of ethanol. Ethanol decreases the elimination of abacavir causing an increase in overall exposure. Interferon Alfa: There was no significant pharmacokinetic interaction between lamivudine and interferon alfa in a trial of 19 healthy male subjects. Methadone: In a trial of 11 HIV‑1‑infected subjects receiving methadone‑maintenance therapy (40 mg and 90 mg daily), with 600 mg of abacavir twice daily (twice the currently recommended dose), oral methadone clearance increased 22% (90% CI: 6% to 42%) [see Drug Interactions (7.1)]. The addition of methadone has no clinically significant effect on the pharmacokinetic properties of abacavir. Ribavirin: In vitro data indicate ribavirin reduces phosphorylation of lamivudine, stavudine, and zidovudine. However, no pharmacokinetic (e.g., plasma concentrations or intracellular triphosphorylated active metabolite concentrations) or pharmacodynamic (e.g., loss of HIV‑1/HCV virologic suppression) interaction was observed when ribavirin and lamivudine (n = 18), stavudine (n = 10), or zidovudine (n = 6) were coadministered as part of a multi‑drug regimen to HIV‑1/HCV co‑infected subjects [see Warnings and Precautions (5.6)]. The effects of other coadministered drugs on abacavir, lamivudine, or zidovudine are provided in Table 4. Table 4. Effect of Coadministered Drugs on Abacavir, Lamivudine, and Zidovudine AUCa
aSee Drug Interactions (7) for additional information on drug interactions. bThe drug-drug interaction was only evaluated in males. cEstimated range of percent difference. 12.4 Microbiology Mechanism of Action Abacavir: Abacavir is a carbocyclic synthetic nucleoside analogue. Abacavir is converted by cellular enzymes to the active metabolite, carbovir triphosphate (CBV‑TP), an analogue of deoxyguanosine‑5′‑triphosphate (dGTP). CBV‑TP inhibits the activity of HIV‑1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. Lamivudine: Lamivudine is a synthetic nucleoside analogue. Intracellularly, lamivudine is phosphorylated to its active 5′-triphosphate metabolite, lamivudine triphosphate (3TC‑TP). The principal mode of action of 3TC‑TP is inhibition of RT via DNA chain termination after incorporation of the nucleotide analogue. Zidovudine: Zidovudine is a synthetic nucleoside analogue. Intracellularly, zidovudine is phosphorylated to its active 5′-triphosphate metabolite, zidovudine triphosphate (ZDV‑TP). The principal mode of action of ZDV‑TP is inhibition of RT via DNA chain termination after incorporation of the nucleotide analogue. Antiviral Activity Abacavir: The antiviral activity of abacavir against HIV‑1 was assessed in a number of cell lines including primary monocytes/macrophages and peripheral blood mononuclear cells (PBMCs). EC50 values ranged from 3.7 to 5.8 microM (1 microM = 0.28 mcg per mL) and 0.07 to 1.0 microM against HIV‑1IIIB and HIV‑1BaL, respectively, and the mean EC50 value was 0.26 ± 0.18 microM against 8 clinical isolates. The median EC50 values of abacavir were 344 nM (range: 14.8 to 676 nM), 16.9 nM (range: 5.9 to 27.9 nM), 8.1 nM (range: 1.5 to 16.7 nM), 356 nM (range: 35.7 to 396 nM), 105 nM (range: 28.1 to 168 nM), 47.6 nM (range: 5.2 to 200 nM), 51.4 nM (range: 7.1 to 177 nM), and 282 nM (range: 22.4 to 598 nM) against HIV‑1 clades A-G and group O viruses (n = 3 except n = 2 for clade B), respectively. The EC50 values against HIV‑2 isolates (n = 4), ranged from 0.024 to 0.49 microM. Lamivudine: The antiviral activity of lamivudine against HIV‑1 was assessed in a number of cell lines including monocytes and PBMCs using standard susceptibility assays. EC50 values were in the range of 0.003 to 15 microM (1 microM = 0.23 mcg per mL). The median EC50 values of lamivudine were 60 nM (range: 20 to 70 nM), 35 nM (range: 30 to 40 nM), 30 nM (range: 20 to 90 nM), 20 nM (range: 3 to 40 nM), 30 nM (range: 1 to 60 nM), 30 nM (range: 20 to 70 nM), 30 nM (range: 3 to 70 nM), and 30 nM (range: 20 to 90 nM) against HIV‑1 clades A-G and group O viruses (n = 3 except n = 2 for clade B), respectively. The EC50 values against HIV‑2 isolates (n = 4) ranged from 0.003 to 0.120 microM in PBMCs. Ribavirin (50 microM) used in the treatment of chronic HCV infection decreased the anti-HIV‑1 activity of lamivudine by 3.5‑fold in MT‑4 cells. Zidovudine: The antiviral activity of zidovudine against HIV‑1 was assessed in a number of cell lines including monocytes and fresh human peripheral blood lymphocytes. The EC50 and EC90 values for zidovudine were 0.01 to 0.49 microM (1 microM = 0.27 mcg per mL) and 0.1 to 9 microM, respectively. HIV‑1 from therapy‑naive subjects with no amino acid substitutions associated with resistance gave median EC50 values of 0.011 microM (range: 0.005 to 0.110 microM) from Virco (n = 92 baseline samples) and 0.0017 microM (range: 0.006 to 0.0340 microM) from Monogram Biosciences (n = 135 baseline samples). The EC50 values of zidovudine against different HIV‑1 clades (A-G) ranged from 0.00018 to 0.02 microM, and against HIV‑2 isolates from 0.00049 to 0.004 microM. Ribavirin has been found to inhibit the phosphorylation of zidovudine in cell culture. Neither abacavir, lamivudine, nor zidovudine were antagonistic to tested anti-HIV agents, with the exception of stavudine where an antagonistic relationship with zidovudine has been demonstrated in cell culture. See full prescribing information for ZIAGEN (abacavir), EPIVIR (lamivudine), RETROVIR (zidovudine). Resistance HIV‑1 isolates with reduced susceptibility to abacavir, lamivudine, or zidovudine have been selected in cell culture and were also recovered from subjects treated with abacavir, lamivudine, and zidovudine, or the combinations of the individual components. Abacavir and Lamivudine: HIV-1 isolates with reduced susceptibility to the combination of abacavir and lamivudine have been selected in cell culture with amino acid substitutions, K65R, L74V, Y115F, and M184V/I emerging in HIV-1 RT. M184V or I substitutions resulted in high-level resistance to lamivudine and an approximately 2-fold decrease in susceptibility to abacavir. Substitutions K65R, L74M, or Y115F with M184V or I conferred a 7- to 8-fold reduction in abacavir susceptibility, and combinations of three substitutions were required to confer more than an 8-fold reduction in susceptibility. Zidovudine: Genotypic analyses of the isolates selected in cell culture and recovered from zidovudine‑treated subjects showed thymidine analog mutation (TAM) substitutions in HIV‑1 RT (M41L, D67N, K70R, L210W, T215Y or F, and K219E/R/H/Q/N) that confer zidovudine resistance. In general, higher levels of resistance were associated with a greater number of substitutions. In some subjects harboring zidovudine‑resistant virus at baseline, phenotypic sensitivity to zidovudine was restored by 12 weeks of treatment with lamivudine and zidovudine. Cross‑resistance Cross‑resistance has been observed among NRTIs. The combination of abacavir/lamivudine has demonstrated decreased susceptibility to viruses with a K65R substitution with or without an M184V/I substitution, viruses with L74V plus the M184V/I substitution, and viruses with TAM substitutions (M41L, D67N, K70R, L210W, T215Y/F, K219 E/R/H/Q/N) plus M184V. An increasing number of TAMs is associated with a progressive reduction in abacavir susceptibility. TAMs are selected by zidovudine and confer cross‑resistance to abacavir, didanosine, stavudine, and tenofovir. Cross‑resistance between lamivudine and zidovudine has not been reported. 13 NONCLINICAL TOXICOLOGY 13.1 Carcinogenesis, Mutagenesis, Impairment of Fertility Carcinogenicity Abacavir: Abacavir was administered orally at 3 dosage levels to separate groups of mice and rats in 2‑year carcinogenicity studies. Results showed an increase in the incidence of malignant and non‑malignant tumors. Malignant tumors occurred in the preputial gland of males and the clitoral gland of females of both species, and in the liver of female rats. In addition, non‑malignant tumors also occurred in the liver and thyroid gland of female rats. These observations were made at systemic exposures in the range of 6 to 32 times the human exposure at the recommended dose of 600 mg. Lamivudine: Long‑term carcinogenicity studies with lamivudine in mice and rats showed no evidence of carcinogenic potential at exposures up to 10 times (mice) and 58 times (rats) the human exposures at the recommended dose of 300 mg. Zidovudine: Zidovudinewas administered orally at 3 dosage levels to separate groups of mice and rats (60 females and 60 males in each group). Initial single daily doses were 30, 60, and 120 mg per kg per day in mice and 80, 220, and 600 mg per kg per day in rats. The doses in mice were reduced to 20, 30, and 40 mg per kg per day after day 90 because of treatment‑related anemia, whereas in rats only the high dose was reduced to 450 mg per kg per day on day 91 and then to 300 mg per kg per day on day 279. In mice, 7 late‑appearing (after 19 months) vaginal neoplasms (5 nonmetastasizing squamous cell carcinomas, 1 squamous cell papilloma, and 1 squamous polyp) occurred in animals given the highest dose. One late‑appearing squamous cell papilloma occurred in the vagina of a middle-dose animal. No vaginal tumors were found at the lowest dose. In rats, 2 late‑appearing (after 20 months), nonmetastasizing vaginal squamous cell carcinomas occurred in animals given the highest dose. No vaginal tumors occurred at the low or middle dose in rats. No other drug‑related tumors were observed in either sex of either species. At doses that produced tumors in mice and rats, the estimated drug exposure (as measured by AUC) was approximately 3 times (mouse) and 24 times (rat) the estimated human exposure at the recommended therapeutic dose of 100 mg every 4 hours. It is not known how predictive the results of rodent carcinogenicity studies may be for humans. Two transplacental carcinogenicity studies were conducted in mice. One study administered zidovudine at doses of 20 mg per kg per day or 40 mg per kg per day from gestation day 10 through parturition and lactation with dosing continuing in offspring for 24 months postnatally. At these doses, exposures were approximately 3 times the estimated human exposure at the recommended doses. After 24 months at the 40‑mg per kg per day dose, an increase in incidence of vaginal tumors was noted with no increase in tumors in the liver or lung or any other organ in either gender. These findings are consistent with results of the standard oral carcinogenicity study in mice, as described earlier. A second study administered zidovudine at maximum tolerated doses of 12.5 mg per day or 25 mg per day (approximately 1,000 mg per kg nonpregnant body weight or approximately 450 mg per kg of term body weight) to pregnant mice from days 12 through 18 of gestation. There was an increase in the number of tumors in the lung, liver, and female reproductive tracts in the offspring of mice receiving the higher dose level of zidovudine. Mutagenicity Abacavir: Abacavir induced chromosomal aberrations both in the presence and absence of metabolic activation in an in vitro cytogenetic study in human lymphocytes. Abacavir was mutagenic in the absence of metabolic activation, although it was not mutagenic in the presence of metabolic activation in an L5178Y mouse lymphoma assay. Abacavir was clastogenic in males and not clastogenic in females in an in vivo mouse bone marrow micronucleus assay. Abacavir was not mutagenic in bacterial mutagenicity assays in the presence and absence of metabolic activation. Lamivudine: Lamivudine was mutagenic in an L5178Y mouse lymphoma assay and clastogenic in a cytogenetic assay using cultured human lymphocytes. Lamivudine was not mutagenic in a microbial mutagenicity assay, in an in vitro cell transformation assay, in a rat micronucleus test, in a rat bone marrow cytogenetic assay, and in an assay for unscheduled DNA synthesis in rat liver. Zidovudine: Zidovudine was mutagenic in an L5178Y mouse lymphoma assay, positive in an in vitro cell transformation assay, clastogenic in a cytogenetic assay using cultured human lymphocytes, and positive in mouse and rat micronucleus tests after repeated doses. It was negative in a cytogenetic study in rats given a single dose. Impairment of Fertility Abacavir or Lamivudine: Abacavir or lamivudine did not affect male or female fertility in rats at a dose associated with exposures approximately 8 or 130 times, respectively, higher than the exposures in humans at the doses of 600 mg and 300 mg (respectively). Zidovudine: Zidovudine, administered to male and female rats at doses up to 7 times the usual adult dose based on body surface area considerations, had no effect on fertility judged by conception rates. 13.2 Animal Toxicology and/or Pharmacology Myocardial degeneration was found in mice and rats following administration of abacavir for 2 years. The systemic exposures were equivalent to 7 to 24 times the expected systemic exposure in humans at a dose of 600 mg. The clinical relevance of this finding has not been determined. 14 CLINICAL STUDIES The following trial was conducted with the individual components of TRIZIVIR [see Clinical Pharmacology (12.3)]. CNA3005 was a multicenter, double-blind, controlled trial in which 562 HIV‑1-infected, therapy‑naive adults were randomized to receive either ZIAGEN (300 mg twice daily) plus COMBIVIR® (lamivudine 150 mg/zidovudine 300 mg twice daily), or indinavir (800 mg 3 times a day) plus COMBIVIR twice daily. The trial was stratified at randomization by pre-entry plasma HIV‑1 RNA 10,000 to 100,000 copies per mL and plasma HIV‑1 RNA greater than 100,000 copies per mL. Trial participants were male (87%), Caucasian (73%), black (15%), and Hispanic (9%). At baseline the median age was 36 years; the median pretreatment CD4+ cell count was 360 cells per mm3, and median plasma HIV-1 RNA was 4.8 log10 copies per mL. Proportions of subjects with plasma HIV‑1 RNA less than 400 copies per mL (using Roche AMPLICOR HIV‑1 MONITOR® Test) through 48 weeks of treatment are summarized in Table 5. Table 5. Outcomes of Randomized Treatment through Week 48 (CNA3005)
Table 6. Proportions of Responders through Week 48 by Screening Plasma HIV‑1 RNA Levels (CNA3005)
Through Week 48, an overall mean increase in CD4+ cell count of about 150 cells per mm3 was observed in both treatment arms. Through Week 48, 9 subjects (3.4%) in the group receiving abacavir (6 CDC classification C events and 3 deaths) and 3 subjects (1.5%) in the group receiving indinavir (2 CDC classification C events and 1 death) experienced clinical disease progression. 16 HOW SUPPLIED/STORAGE AND HANDLING TRIZIVIR is available as tablets. Each tablet contains 300 mg of abacavir as abacavir sulfate, 150 mg of lamivudine, and 300 mg of zidovudine. The tablets are blue‑green capsule-shaped, film‑coated, and imprinted with GX LL1 on one side with no markings on the reverse side. They are packaged as follows: Bottles of 60 tablets (NDC 49702-217-18). Store at 25°C (77°F); excursions permitted to 15° to 30°C (59° to 86°F) (see USP Controlled Room Temperature). 17 PATIENT COUNSELING INFORMATION Advise the patient to read the FDA-approved patient labeling (Medication Guide). Hypersensitivity Reaction Inform patients: • that a Medication Guide and Warning Card summarizing the symptoms of the abacavir hypersensitivity reaction and other product information will be dispensed by the pharmacist with each new prescription and refill of TRIZIVIR, and instruct the patient to read the Medication Guide and Warning Card every time to obtain any new information that may be present about TRIZIVIR. The complete text of the Medication Guide is reprinted at the end of this document. • to carry the Warning Card with them. • how to identify a hypersensitivity reaction [see Warnings and Precautions (5.1), Medication Guide]. • that if they develop symptoms consistent with a hypersensitivity reaction they should call their healthcare provider right away to determine if they should stop taking TRIZIVIR. • that a hypersensitivity reaction can worsen and lead to hospitalization or death if TRIZIVIR is not immediately discontinued. • to not restart TRIZIVIR or any other abacavir‑containing product following a hypersensitivity reaction because more severe symptoms can occur within hours and may include life‑threatening hypotension and death. • that a hypersensitivity reaction is usually reversible if it is detected promptly and TRIZIVIR is stopped right away. • that if they have interrupted TRIZIVIR for reasons other than symptoms of hypersensitivity (for example, those who have an interruption in drug supply), a serious or fatal hypersensitivity reaction may occur with reintroduction of abacavir. • to not restart TRIZIVIR or any other abacavir‑containing product without medical consultation and only if medical care can be readily accessed by the patient or others. Related Products that are Not Recommended Inform patients that they should not take TRIZIVIR with ATRIPLA®, COMBIVIR, COMPLERA®, DUTREBIS™, EMTRIVA®, EPIVIR, EPIVIR‑HBV®, EPZICOM®, RETROVIR, STRIBILD®, TRIUMEQ®, TRUVADA®, or ZIAGEN. Neutropenia and Anemia Inform patients that the important toxicities associated with zidovudine are neutropenia and/or anemia. Inform them of the extreme importance of having their blood counts followed closely while on therapy, especially for patients with advanced HIV‑1 disease [see Boxed Warning, Warnings and Precautions (5.2)]. Myopathy Inform patients that myopathy and myositis with pathological changes, similar to that produced by HIV‑1 disease, have been associated with prolonged use of zidovudine [see Warnings and Precautions (5.3)]. Lactic Acidosis/Hepatomegaly Inform patients that some HIV medicines, including TRIZIVIR, can cause a rare, but serious condition called lactic acidosis with liver enlargement (hepatomegaly) [see Warnings and Precautions (5.4)]. Patients with Hepatitis B or C Co-infection Advise patients co-infected with HIV‑1 and HBV that worsening of liver disease has occurred in some cases when treatment with lamivudine was discontinued. Advise patients to discuss any changes in regimen with their physician [see Warnings and Precautions (5.5)]. Inform patients with HIV‑1/HCV co-infection that hepatic decompensation (some fatal) has occurred in HIV‑1/HCV co-infected patients receiving combination antiretroviral therapy for HIV‑1 and interferon alfa with or without ribavirin [see Warnings and Precautions (5.6)]. Immune Reconstitution Syndrome In some patients with advanced HIV infection, signs and symptoms of inflammation from previous infections may occur soon after anti-HIV treatment is started. It is believed that these symptoms are due to an improvement in the body's immune response, enabling the body to fight infections that may have been present with no obvious symptoms. Advise patients to inform their healthcare provider immediately of any symptoms of infection [see Warnings and Precautions (5.7)]. Redistribution/Accumulation of Body Fat Inform patients that redistribution or accumulation of body fat may occur in patients receiving antiretroviral therapy and that the cause and long-term health effects of these conditions are not known at this time [see Warnings and Precautions (5.8)]. Information about HIV-1 Infection TRIZIVIR is not a cure for HIV-1 infection and patients may continue to experience illnesses associated with HIV-1 infection, including opportunistic infections. Patients must remain on continuous HIV therapy to control HIV‑1 infection and decrease HIV-related illness. Inform patients that sustained decreases in plasma HIV RNA have been associated with a reduced risk of progression to AIDS and death. Advise patients to remain under the care of a physician when using TRIZIVIR. Advise patients to take all HIV medications exactly as prescribed. Advise patients to avoid doing things that can spread HIV‑1 infection to others. Advise patients not to re-use or share needles or other injection equipment. Advise patients not to share personal items that can have blood or body fluids on them, like toothbrushes and razor blades. Advise patients to always practice safer sex by using a latex or polyurethane condom to lower the chance of sexual contact with semen, vaginal secretions, or blood. Female patients should be advised not to breastfeed. Mothers with HIV‑1 should not breastfeed because HIV‑1 can be passed to the baby in the breast milk. Instruct patients that if they miss a dose, they should take it as soon as they remember. If they do not remember until it is time for the next dose, they should be instructed to skip the missed dose and go back to the regular schedule. Patients should not double their next dose or take more than the prescribed dose. Instruct patients to read the Medication Guide before starting TRIZIVIR and to reread it each time the prescription is renewed. Instruct patients to inform their physician or pharmacist if they develop any unusual symptom, or if any known symptom persists or worsens. COMBIVIR, EPIVIR, EPZICOM, RETROVIR, TRIUMEQ, TRIZIVIR, and ZIAGEN are registered trademarks of the ViiV Healthcare group of companies. Other brands are trademarks of their respective owners and are not trademarks of the ViiV Healthcare group of companies. The makers of these brands are not affiliated with and do not endorse the ViiV Healthcare group of companies or its products. |
TRIZIVIR Tablets(复方阿巴卡韦/拉米夫定/齐多夫定片)简介:
英文药名:TRIZIVIR(abacavir sulfate/lamivudine/zidovudine)Tablets
中文药名:复方阿巴卡韦/拉米夫定/齐多夫定片
生产厂家:葛兰素史克适应证三协唯用于治疗人类免疫缺陷病毒(HIV)感染的成人。三 ... 责任编辑:admin |
最新文章更多推荐文章更多热点文章更多
|