繁体中文
设为首页
加入收藏
当前位置:药品说明书与价格首页 >> 心血管系统 >> 新药推荐 >> 西药 >> 心得安片Inderal(PROPRANOLOL HCL)

心得安片Inderal(PROPRANOLOL HCL)

2014-03-07 14:30:24  作者:新特药房  来源:互联网  浏览次数:2160  文字大小:【】【】【
简介: 通用名称:普萘洛尔 英文名称:Propranolol 中文别名:恩得来、恩特来、心得安、萘心安、萘氧丙醇胺 英文别名:Inderal、Propranololum 规格 盐酸普萘洛尔片10mg, 20mg, 40mg, 80mg, 120mg。心得安长效 ...

通用名称:普萘洛尔
英文名称:Propranolol
中文别名:恩得来、恩特来、心得安、萘心安、萘氧丙醇胺
英文别名:Inderal、Propranololum
规格
盐酸普萘洛尔片10mg, 20mg, 40mg, 80mg, 120mg。
心得安长效胶囊 40mg, 60mg, 80mg, 120mg, 160mg。
药理作用   
药效学
普萘洛尔能竞争性的阻断β受体,大剂量尚有膜稳定作用,抑制Na离子内流,从而产生抗心律失常作用。
1、降低自律性。抑制窦房结、心房、浦肯野纤维自律性,此作用在运动及情绪激动时尤为明显,也能降低儿茶酚胺所致的迟后去极而防止触发活动。
2、减慢传导。在其阻断β受体的浓度时,并不影响传导速度,但当血药浓度超过100ng/ml时,由于膜稳定性作用,可降低0相上升速率,明显减慢房室结及浦肯野纤维的传导。
3、对动作电位时程和有效不应期的影响。治疗量缩短动作电位时程和有效不应期,高浓度时则使之延长,对房室结的有效不应期有明显的延长作用。
药动学
口服后胃肠道吸收较完全(90%), 1~1.5小时血药浓度达峰值,但进入全身循环前即有大量被肝代谢而失活,生物利用度为30%。与血浆蛋白的结合率很高, 为93%, 半衰期为2~3小时,经肾脏排泄,主要为代谢产物,小部分(<1%)为原形物。 不能经透析排出。
适应症   
用于治疗:
①心律失常,纠正室上性快速心律失常、室性心律失常、泮地黄类及儿茶酚胺引起的快速心律失常;
②心绞痛(典型心绞痛,即劳力型心绞痛);
③高血压,作为第一线用药,单独或与其他药物合并应用;
④肥厚性心肌病,用于减低流出道压差,减轻心绞痛、心悸与昏厥等症状;
⑤嗜铬细胞瘤,用于控制心动过速;
⑥甲状腺机能亢进症用于控制心率过快,也用于治疗甲状腺危象或危象先兆;甲状腺次全切除术的术前准备;对病情较重的甲亢患者在抗甲状腺药物或放射性碘治疗尚未奏效前用以控制症状。
⑦心肌梗塞;作为次级预防;
⑧二尖瓣脱垂综合征。
用法用量   
1.抗心律失常口服,一次 10—30mg,一日3—4次,应根据需要及耐受程度调整用量。严重心律失常应急时可静脉注射 1—3mg,以每分钟不超过 1mg的速度静注,必要时2分钟后可重复一次,以后隔 4小时一次。小儿用量尚未确定,一般口服按体重每日 0.5—1.0mg/kg,分次服;静脉注射按体重0.01—0.1mg/kg,缓慢注入,一次量不宜超过 1mg。
2.心绞痛口服,开始 5—10mg,每日 3—4次,每 3日可增加10—20mg,可渐增至每日200mg,分次服。
3.高血压口服,一次 5—10mg,每日3—4次,按需要及耐受程度逐渐调整,至症状被控制。
4.肥厚性心肌病口服,一次 10—20mg,每日 2—4次,按需要及耐受程度逐渐调整。
5.嗜铬细胞瘤口服,一次 10—50mg,一日 3—4次,术前用 3天,常与α受体阻滞药同用,一般应先用 α受体阻滞药,待药效出现并稳定后再加用本品。任何疑问,请遵医嘱!
禁用/慎用   
(1)本品可通过胎盘进入胎儿体内,有报道妊娠高血压者用后可致宫内胎儿发育迟缓,分娩时无力造成难产,新生儿可产生低血压、低血糖、呼吸抑制及心率减慢,尽管也有报告对母亲及胎儿均无影响,但必须权衡利弊,不宜作为孕妇第一线治疗药物。
(2)可从乳汁分泌小量,故哺乳期妇女应用必须权衡利弊。
(3)老年人对本品代谢与排泄能力低,应适当调节剂量。
(4)下列情况应禁用:
①支气管哮喘;
②心源性休克;
③心传导阻滞(Ⅱ至Ⅲ度房室传导阻滞);
④重度心力衰竭;
⑤窦性心动过缓。
(5)下列情况应慎用:
①过敏史;
②充血性心力衰竭;
③糖尿病;
④肺气肿或非过敏性支气管炎;
⑤肝功能不全;
⑥甲状腺功能低下;
⑦雷诺综合征或其他周围血管疾病;
⑧肾功能减退。
给药说明   
①用量必须强调个体化,不同个体、不同疾病用量不尽相同,肝、肾功能不全者用小量;
②糖尿病患者虽可引起血糖过低,但在非糖尿病人中则无降血糖作用;
③注意血药浓度不能完全预示药理效应,故还应根据心率及血压等临床征象指导临床用药;
④口服可以在空腹时,也可与食物共进,后者可使本品在肝内代谢减慢,生物利用度增值;
⑤冠心病患者使用本品不宜骤停,否则可出现心绞痛、心肌梗塞或室性心动过速;
⑥甲亢病人用本品也不可骤停,否则使甲亢症状加重;
⑦长期用本品者撤药须逐渐递减剂量,至少经过 3天,一般为 2周;
⑧长期应用可在少数病人出现心力衰竭,倘若出现,可用洋地黄苷类和(或)利尿药纠正,并渐递减达停用。
应用本品过程中应定期检查血常规、血压、心功能、肝功能、肾功能,糠尿病病人应定期查血糖。
(1)甲亢合并心功能不全者慎用,因本品可使心脏收缩功能减弱,必须采用时,应合用强心药。
(2)作为手术前准备,其优点为奏效快,疗程短,往往数天至一周左右即可控制症状,使心率降至正常范围。由于本品作用往往短暂,故必须一直用药到手术日晨,在手术中必要时需静脉注射,手术后也需继续应用,一直到血T4、T3降至正常。单用本品作手术前准备不如抗甲状腺药物加碘剂可靠,故主要用于不能耐受抗甲状腺药物者及急需紧急手术者。
不良反应   
由于本品能透入神经系统,故可出现中枢神经系统不良反应。
①较常见的有眩晕或头昏(低血压所致)、心率过慢(<50次/分钟);
②较少见的有支气管痉挛及呼吸困难、充血性心力衰竭、神志模糊(尤见于老年人)、精神抑郁,反应迟钝;
③更少见的有发热和咽痛(粒细胞缺乏)、皮疹(过敏反应)、出血倾向(血小板减小);
④不良反应持续存在时,须格外警惕的有四肢冰冷、腹泻、倦怠、眼口或皮肤干燥、恶心、指趾麻木、异常疲乏等。
应严密观察血压及心律变化,如心律变慢,立即停药.乏力,嗜睡,头晕,失眠,恶心,皮疹.
个别病例有周身性红斑狼疮样反应,多关节病综合症,幻视,性功能障碍(或性欲下降).剂量过大时引起低血压(血压下降),心动过缓,惊厥,呕吐.
可诱发缺血性脑梗塞,可有心源性休克,甚至死亡。
它可引起哮喘;可发生Ⅰ型过敏反应及Ⅳ型迟发过敏反应颇似Lyell综合征;可出现荨麻疹、牛皮癣样皮疹。有报告可发生过敏性肺炎;脱发;及致有硬化性腹膜炎。
此药的停药反应并不限于心血管,也常见有头痛、震颤及焦虑,有时也可出现精神异常。
药物相互作用   
(1)与可乐定同用而须停药时,须先停用本品,数天后再逐步减停可乐定,以免血压波动。
(2)与洋地黄苷类同用,可发生房室传导阻滞而致心率过慢,故须严密观察。
(3)与肾上腺素、苯福林或拟交感胺类同用,可引起显著高血压、心率过慢,也可能出现房室传导阻滞,故须严密观察。
(4)可使非去极化肌松药如氯化筒箭毒碱、加拉碘铵等增效,时效也延长。
(5)可影响血糖水平,故与降糖药同用时,须调整后者的剂量。
(6)与异丙肾上腺素或黄嘌呤同用,可使后两者疗效减弱。
(7)与单胺氧化酶抑制剂同用,可致极度低血压,禁用。
(8)与吩噻嗪类同用,可使两者的血药浓度均升高。
(9)与利血平同用,两者作用相加,β受体阻滞作用增强,有可能出现心动过缓及低血压。
苯巴比妥及异烟肼使普萘洛尔的清除增多并减低它们在周身的利用率。
西咪替丁为一种强效肝微粒体酶抑制剂,可降低普萘洛尔、拉贝洛尔、美托洛尔等药物在肝内的代谢,延迟这些药物的排泄,导致其血药浓度明显升高。因而,合并用药时需减少上述药物的剂量以免引起药物不良反应。
注意事项
(1)除对心脏的β受体(β1受体)有阻断作用外,对支气管及血管平滑肌的β受体(β2受体)亦有阻断作用,可引起支气管痉挛及鼻粘膜微细血管收缩,故忌用于哮喘及过敏性鼻炎病人。
(2)忌用于窦性心动过缓、重度房室传导阻滞、心源性休克、低血压症病人。充血性心力衰竭病人(继发于心动过速者除外),须等心衰得到控制后始可用本品。不宜与抑制心脏的麻醉药(如乙醚)合用。
(3)有增加洋地黄毒性的作用,对已洋地黄化而心脏高度扩大、心率又较不平稳的病人忌用。
(4)不宜与单胺氧化酶抑制剂(如帕吉林)合用。
(5)本品剂量的个体差异较大,宜从小到大试用,以选择适宜的剂量。长期用药时不可突然停药。
(6)副作用可见乏力、嗜睡、头晕、失眠、恶心、腹胀、皮疹、晕厥、低血压、心动过缓等,须注意。

DESCRIPTION

Inderal® (propranolol hydrochloride) is a synthetic beta-adrenergic receptor blocking agent chemically described as 2-Propanol, 1-[(1-methylethyl)amino]-3-(1-naphthalenyloxy)-, hydrochloride,(±)-. Its molecular and structural formulae are:

Propranolol hydrochloride is a stable, white, crystalline solid which is readily soluble in water and ethanol. Its molecular weight is 295.80.

Inderal is available as 10 mg, 20 mg, 40 mg, 60 mg, and 80 mg tablets for oral administration.

The inactive ingredients contained in Inderal Tablets are: lactose, magnesium stearate, microcrystalline cellulose, and stearic acid. In addition, Inderal 10 mg and 80 mg Tablets contain FD&C Yellow No. 6 and D&C Yellow No. 10; Inderal 20 mg Tablets contain FD&C Blue No. 1; Inderal 40 mg Tablets contain FD&C Blue No. 1, FD&C Yellow No. 6, and D&C Yellow No. 10; Inderal 60 mg Tablets contain D&C Red No. 30.

CLINICAL PHARMACOLOGY

General

Propranolol is a nonselective beta-adrenergic receptor blocking agent possessing no other autonomic nervous system activity. It specifically competes with beta-adrenergic receptor agonist agents for available receptor sites. When access to beta-receptor sites is blocked by propranolol, the chronotropic, inotropic, and vasodilator responses to beta-adrenergic stimulation are decreased proportionately. At dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. The significance of the membrane action in the treatment of arrhythmias is uncertain.

Mechanism of Action

The mechanism of the antihypertensive effect of propranolol has not been established. Factors that may contribute to the antihypertensive action include: (1) decreased cardiac output, (2) inhibition of renin release by the kidneys, and (3) diminution of tonic sympathetic nerve outflow from vasomotor centers in the brain. Although total peripheral resistance may increase initially, it readjusts to or below the pretreatment level with chronic use of propranolol. Effects of propranolol on plasma volume appear to be minor and somewhat variable.

In angina pectoris, propranolol generally reduces the oxygen requirement of the heart at any given level of effort by blocking the catecholamine-induced increases in the heart rate, systolic blood pressure, and the velocity and extent of myocardial contraction. Propranolol may increase oxygen requirements by increasing left ventricular fiber length, end diastolic pressure, and systolic ejection period. The net physiologic effect of beta-adrenergic blockade is usually advantageous and is manifested during exercise by delayed onset of pain and increased work capacity.

Propranolol exerts its antiarrhythmic effects in concentrations associated with beta-adrenergic blockade, and this appears to be its principal antiarrhythmic mechanism of action. In dosages greater than required for beta blockade, propranolol also exerts a quinidine-like or anesthetic-like membrane action, which affects the cardiac action potential. The significance of the membrane action in the treatment of arrhythmias is uncertain.

The mechanism of the antimigraine effect of propranolol has not been established. Beta-adrenergic receptors have been demonstrated in the pial vessels of the brain.

The specific mechanism of propranolol's antitremor effects has not been established, but beta-2 (noncardiac) receptors may be involved. A central effect is also possible. Clinical studies have demonstrated that Inderal is of benefit in exaggerated physiological and essential (familial) tremor.

PHARMACOKINETICS AND DRUG METABOLISM

Absorption

Propranolol is highly lipophilic and almost completely absorbed after oral administration. However, it undergoes high first-pass metabolism by the liver and on average, only about 25% of propranolol reaches the systemic circulation. Peak plasma concentrations occur about 1 to 4 hours after an oral dose.

Administration of protein-rich foods increase the bioavailability of propranolol by about 50% with no change in time to peak concentration, plasma binding, half-life, or the amount of unchanged drug in the urine.

Distribution

Approximately 90% of circulating propranolol is bound to plasma proteins (albumin and alpha1 acid glycoprotein). The binding is enantiomer-selective. The S(-)-enantiomer is preferentially bound to alpha1 glycoprotein and the R(+)-enantiomer preferentially bound to albumin. The volume of distribution of propranolol is approximately 4 liters/kg.

Propranolol crosses the blood-brain barrier and the placenta, and is distributed into breast milk.

Metabolism and Elimination

Propranolol is extensively metabolized with most metabolites appearing in the urine. Propranolol is metabolized through three primary routes: aromatic hydroxylation (mainly 4-hydroxylation), N-dealkylation followed by further side-chain oxidation, and direct glucuronidation. It has been estimated that the percentage contributions of these routes to total metabolism are 42%, 41% and 17%, respectively, but with considerable variability between individuals. The four major metabolites are propranolol glucuronide, naphthyloxylactic acid and glucuronic acid, and sulfate conjugates of 4-hydroxy propranolol.

In vitro studies have indicated that the aromatic hydroxylation of propranolol is catalyzed mainly by polymorphic CYP2D6. Side-chain oxidation is mediated mainly by CYP1A2 and to some extent by CYP2D6. 4-hydroxy propranolol is a weak inhibitor of CYP2D6.

Propranolol is also a substrate of CYP2C19 and a substrate for the intestinal efflux transporter, p‑glycoprotein (p-gp). Studies suggest however that p-gp is not dose-limiting for intestinal absorption of propranolol in the usual therapeutic dose range.

In healthy subjects, no difference was observed between CYP2D6 extensive metabolizers (EMs) and poor metabolizers (PMs) with respect to oral clearance or elimination half-life. Partial clearance of 4-hydroxy propranolol was significantly higher and of naphthyloxyactic acid significantly lower in EMs than PMs.

The plasma half-life of propranolol is from 3 to 6 hours.

Enantiomers

Propranolol is a racemic mixture of two enantiomers, R(+) and S(-). The S(-)-enantiomer is approximately 100 times as potent as the R(+)-enantiomer in blocking beta adrenergic receptors. In normal subjects receiving oral doses of racemic propranolol, S(-)-enantiomer concentrations exceeded those of the R(+)-enantiomer by 40-90% as a result of stereoselective hepatic metabolism. Clearance of the pharmacologically active S(-)-propranolol is lower than R(+)-propranolol after intravenous and oral doses.

Special Populations

Geriatric

In a study of 12 elderly (62-79 years old) and 12 young (25-33 years old) healthy subjects, the clearance of S(-)-enantiomer of propranolol was decreased in the elderly. Additionally, the half-life of both the R(+)- and S(-)-propranolol were prolonged in the elderly compared with the young (11 hours vs. 5 hours).

Clearance of propranolol is reduced with aging due to decline in oxidation capacity (ring oxidation and side-chain oxidation). Conjugation capacity remains unchanged. In a study of 32 patients age 30 to 84 years given a single 20-mg dose of propranolol, an inverse correlation was found between age and the partial metabolic clearances to 4-hydroxypropranolol (40HP-ring oxidation) and to naphthoxylactic acid (NLA-side chain oxidation). No correlation was found between age and the partial metabolic clearance to propranolol glucuronide (PPLG-conjugation).

Gender

In a study of 9 healthy women and 12 healthy men, neither the administration of testosterone nor the regular course of the menstrual cycle affected the plasma binding of the propranolol enantiomers. In contrast, there was a significant, although non-enantioselective diminution of the binding of propranolol after treatment with ethinyl estradiol. These findings are inconsistent with another study, in which administration of testosterone cypionate confirmed the stimulatory role of this hormone on propranolol metabolism and concluded that the clearance of propranolol in men is dependent on circulating concentrations of testosterone. In women, none of the metabolic clearances for propranolol showed any significant association with either estradiol or testosterone.

Race

A study conducted in 12 Caucasian and 13 African-American male subjects taking propranolol, showed that at steady state, the clearance of R(+)- and S(-)-propranolol were about 76% and 53% higher in African-Americans than in Caucasians, respectively.

Chinese subjects had a greater proportion (18% to 45% higher) of unbound propranolol in plasma compared to Caucasians, which was associated with a lower plasma concentration of alpha1 acid glycoprotein.

Renal Insufficiency

In a study conducted in 5 patients with chronic renal failure, 6 patients on regular dialysis, and 5 healthy subjects, who received a single oral dose of 40 mg of propranolol, the peak plasma concentrations (Cmax) of propranolol in the chronic renal failure group were 2 to 3-fold higher (161±41 ng/mL) than those observed in the dialysis patients (47±9 ng/mL) and in the healthy subjects (26±1 ng/mL). Propranolol plasma clearance was also reduced in the patients with chronic renal failure.

Studies have reported a delayed absorption rate and a reduced half-life of propranolol in patients with renal failure of varying severity. Despite this shorter plasma half-life, propranolol peak plasma levels were 3-4 times higher and total plasma levels of metabolites were up to 3 times higher in these patients than in subjects with normal renal function.

Chronic renal failure has been associated with a decrease in drug metabolism via downregulation of hepatic cytochrome P450 activity resulting in a lower “first-pass” clearance.

Propranolol is not significantly dialyzable.

Hepatic Insufficiency

Propranolol is extensively metabolized by the liver. In a study conducted in 7 patients with cirrhosis and 9 healthy subjects receiving 80-mg oral propranolol every 8 hours for 7 doses, the steady-state unbound propranolol concentration in patients with cirrhosis was increased 3-fold in comparison to controls. In cirrhosis, the half-life increased to 11 hours compared to 4 hours (see PRECAUTIONS).

Drug Interactions

Interactions with Substrates, Inhibitors or Inducers of Cytochrome P-450 Enzymes

Because propranolol's metabolism involves multiple pathways in the cytochrome P-450 system (CYP2D6, 1A2, 2C19), co-administration with drugs that are metabolized by, or effect the activity (induction or inhibition) of one or more of these pathways may lead to clinically relevant drug interactions (see Drug Interactions under PRECAUTIONS).

Substrates or Inhibitors of CYP2D6

Blood levels and/or toxicity of propranolol may be increased by co-administration with substrates or inhibitors of CYP2D6, such as amiodarone, cimetidine, delavudin, fluoxetine, paroxetine, quinidine, and ritonavir. No interactions were observed with either ranitidine or lansoprazole.

Substrates or Inhibitors of CYP1A2

Blood levels and/or toxicity of propranolol may be increased by co-administration with substrates or inhibitors of CYP1A2, such as imipramine, cimetidine, ciprofloxacin, fluvoxamine, isoniazid, ritonavir, theophylline, zileuton, zolmitriptan, and rizatriptan.

Substrates or Inhibitors of CYP2C19

Blood levels and/or toxicity of propranolol may be increased by co-administration with substrates or inhibitors of CYP2C19, such as fluconazole, cimetidine, fluoxetine, fluvoxamine, tenioposide, and tolbutamide. No interaction was observed with omeprazole.

Inducers of Hepatic Drug Metabolism

Blood levels of propranolol may be decreased by co-administration with inducers such as rifampin, ethanol, phenytoin, and phenobarbital. Cigarette smoking also induces hepatic metabolism and has been shown to increase up to 77% the clearance of propranolol, resulting in decreased plasma concentrations.

Cardiovascular Drugs

Antiarrhythmics

The AUC of propafenone is increased by more than 200% by co-administration of propranolol.

The metabolism of propranolol is reduced by co-administration of quinidine, leading to a two‑three fold increased blood concentration and greater degrees of clinical beta-blockade.

The metabolism of lidocaine is inhibited by co-administration of propranolol, resulting in a 25% increase in lidocaine concentrations.

Calcium Channel Blockers

The mean Cmax and AUC of propranolol are increased, respectively, by 50% and 30% by co‑administration of nisoldipine and by 80% and 47%, by co‑administration of nicardipine.

The mean Cmax and AUC of nifedipine are increased by 64% and 79%, respectively, by co‑administration of propranolol.

Propranolol does not affect the pharmacokinetics of verapamil and norverapamil. Verapamil does not affect the pharmacokinetics of propranolol.

Non-Cardiovascular Drugs

Migraine Drugs

Administration of zolmitriptan or rizatriptan with propranolol resulted in increased concentrations of zolmitriptan (AUC increased by 56% and Cmax by 37%) or rizatriptan (the AUC and Cmax were increased by 67% and 75%, respectively).

Theophylline

Co-administration of theophylline with propranolol decreases theophylline oral clearance by 30% to 52%.

Benzodiazepines

Propranolol can inhibit the metabolism of diazepam, resulting in increased concentrations of diazepam and its metabolites. Diazepam does not alter the pharmacokinetics of propranolol.

The pharmacokinetics of oxazepam, triazolam, lorazepam, and alprazolam are not affected by co-administration of propranolol.

Neuroleptic Drugs

Co-administration of long-acting propranolol at doses greater than or equal to 160 mg/day resulted in increased thioridazine plasma concentrations ranging from 55% to 369% and increased thioridazine metabolite (mesoridazine) concentrations ranging from 33% to 209%.

Co-administration of chlorpromazine with propranolol resulted in a 70% increase in propranolol plasma level.

Anti-Ulcer Drugs

Co-administration of propranolol with cimetidine, a non-specific CYP450 inhibitor, increased propranolol AUC and Cmax by 46% and 35%, respectively. Co-administration with aluminum hydroxide gel (1200 mg) may result in a decrease in propranolol concentrations.

Co-administration of metoclopramide with the long-acting propranolol did not have a significant effect on propranolol's pharmacokinetics.

Lipid Lowering Drugs

Co-administration of cholestyramine or colestipol with propranolol resulted in up to 50% decrease in propranolol concentrations.

Co-administration of propranolol with lovastatin or pravastatin, decreased 18% to 23% the AUC of both, but did not alter their pharmacodynamics. Propranolol did not have an effect on the pharmacokinetics of fluvastatin.

Warfarin

Concomitant administration of propranolol and warfarin has been shown to increase warfarin bioavailability and increase prothrombin time.

Alcohol

Concomitant use of alcohol may increase plasma levels of propranolol.

PHARMACODYNAMICS AND CLINICAL EFFECTS

Hypertension

In a retrospective, uncontrolled study, 107 patients with diastolic blood pressure 110 to 150 mmHg received propranolol 120 mg t.i.d. for at least 6 months, in addition to diuretics and potassium, but with no other antihypertensive agent. Propranolol contributed to control of diastolic blood pressure, but the magnitude of the effect of propranolol on blood pressure cannot be ascertained.

Angina Pectoris

In a double-blind, placebo-controlled study of 32 patients of both sexes, aged 32 to 69 years, with stable angina, propranolol 100 mg t.i.d. was administered for 4 weeks and shown to be more effective than placebo in reducing the rate of angina episodes and in prolonging total exercise time.

Atrial Fibrillation

In a report examining the long-term (5-22 months) efficacy of propranolol, 10 patients, aged 27 to 80, with atrial fibrillation and ventricular rate >120 beats per minute despite digitalis, received propranolol up to 30 mg t.i.d. Seven patients (70%) achieved ventricular rate reduction to <100 beats per minute.

Myocardial Infarction

The Beta-Blocker Heart Attack Trial (BHAT) was a National Heart, Lung and Blood Institute-sponsored multicenter, randomized, double-blind, placebo-controlled trial conducted in 31 U.S. centers (plus one in Canada) in 3,837 persons without history of severe congestive heart failure or presence of recent heart failure; certain conduction defects; angina since infarction, who had survived the acute phase of myocardial infarction. Propranolol was administered at either 60 or 80 mg t.i.d. based on blood levels achieved during an initial trial of 40 mg t.i.d. Therapy with Inderal, begun 5 to 21 days following infarction, was shown to reduce overall mortality up to 39 months, the longest period of follow-up. This was primarily attributable to a reduction in cardiovascular mortality. The protective effect of Inderal was consistent regardless of age, sex, or site of infarction. Compared with placebo, total mortality was reduced 39% at 12 months and 26% over an average follow-up period of 25 months. The Norwegian Multicenter Trial in which propranolol was administered at 40 mg q.i.d. gave overall results which support the findings in the BHAT.

Although the clinical trials used either t.i.d. or q.i.d. dosing, clinical, pharmacologic, and pharmacokinetic data provide a reasonable basis for concluding that b.i.d. dosing with propranolol should be adequate in the treatment of postinfarction patients.

Migraine

In a 34-week, placebo-controlled, 4-period, dose-finding crossover study with a double-blind randomized treatment sequence, 62 patients with migraine received propranolol 20 to 80 mg 3 or 4 times daily. The headache unit index, a composite of the number of days with headache and the associated severity of the headache, was significantly reduced for patients receiving propranolol as compared to those on placebo.

Essential Tremor

In a 2 week, double-blind, parallel, placebo-controlled study of 9 patients with essential or familial tremor, propranolol, at a dose titrated as needed from 40-80 mg t.i.d. reduced tremor severity compared to placebo.

Hypertrophic Subaortic Stenosis

In an uncontrolled series of 13 patients with New York Heart Association (NYHA) class 2 or 3 symptoms and hypertrophic subaortic stenosis diagnosed at cardiac catheterization, oral propranolol 40-80 mg t.i.d. was administered and patients were followed for up to 17 months. Propranolol was associated with improved NYHA class for most patients.

Pheochromocytoma

In an uncontrolled series of 3 patients with norepinephrine-secreting pheochromocytoma who were pretreated with an alpha adrenergic blocker (prazosin), perioperative use of propranolol at doses of 40-80 mg t.i.d. resulted in symptomatic blood pressure control.

INDICATIONS AND USAGE

Hypertension

Inderal is indicated in the management of hypertension. It may be used alone or used in combination with other antihypertensive agents, particularly a thiazide diuretic. Inderal is not indicatedin the management of hypertensive emergencies.

Angina Pectoris Due to Coronary Atherosclerosis

Inderal is indicated to decrease angina frequency and increase exercise tolerance in patients with angina pectoris.

Atrial Fibrillation

Inderal is indicated to control ventricular rate in patients with atrial fibrillation and a rapid ventricular response.

Myocardial Infarction

Inderal is indicated to reduce cardiovascular mortality in patients who have survived the acute phase of myocardial infarction and are clinically stable.

Migraine

Inderal is indicated for the prophylaxis of common migraine headache. The efficacy of propranolol in the treatment of a migraine attack that has started has not been established, and propranolol is not indicated for such use.

Essential Tremor

Inderal is indicated in the management of familial or hereditary essential tremor. Familial or essential tremor consists of involuntary, rhythmic, oscillatory movements, usually limited to the upper limbs. It is absent at rest, but occurs when the limb is held in a fixed posture or position against gravity and during active movement. Inderal causes a reduction in the tremor amplitude, but not in the tremor frequency. Inderal is not indicated for the treatment of tremor associated with Parkinsonism.

Hypertrophic Subaortic Stenosis

Inderal improves NYHA functional class in symptomatic patients with hypertrophic subaortic stenosis.

Pheochromocytoma

Inderal is indicated as an adjunct to alpha-adrenergic blockade to control blood pressure and reduce symptoms of catecholamine-secreting tumors.

CONTRAINDICATIONS

Propranolol is contraindicated in 1) cardiogenic shock; 2) sinus bradycardia and greater than first degree block; 3) bronchial asthma; and 4) in patients with known hypersensitivity to propranolol hydrochloride.

WARNINGS

Angina Pectoris

There have been reports of exacerbation of angina and, in some cases, myocardial infarction, following abrupt discontinuance of propranolol therapy. Therefore, when discontinuance of propranolol is planned, the dosage should be gradually reduced over at least a few weeks and the patient should be cautioned against interruption or cessation of therapy without the physician's advice. If propranolol therapy is interrupted and exacerbation of angina occurs, it usually is advisable to reinstitute propranolol therapy and take other measures appropriate for the management of angina pectoris. Since coronary artery disease may be unrecognized, it may be prudent to follow the above advice in patients considered at risk of having occult atherosclerotic heart disease who are given propranolol for other indications.

Hypersensitivity and Skin Reactions

Hypersensitivity reactions, including anaphylactic/anaphylactoid reactions, have been associated with the administration of propranolol (see ADVERSE REACTIONS).

Cutaneous reactions, including Stevens-Johnson Syndrome, toxic epidermal necrolysis, exfoliative dermatitis, erythema multiforme, and urticaria, have been reported with use of propranolol (see ADVERSE REACTIONS).

Cardiac Failure

Sympathetic stimulation may be a vital component supporting circulatory function in patients with congestive heart failure, and its inhibition by beta blockade may precipitate more severe failure. Although beta blockers should be avoided in overt congestive heart failure, some have been shown to be highly beneficial when used with close follow-up in patients with a history of failure who are well compensated and are receiving additional therapies, including diuretics as needed. Beta-adrenergic blocking agents do not abolish the inotropic action of digitalis on heart muscle.

In Patients without a History of Heart Failure, continued use of beta blockers can, in some cases, lead to cardiac failure.

Nonallergic Bronchospasm (e.g., Chronic Bronchitis, Emphysema)

In general, patients with bronchospastic lung disease should not receive beta blockers. Propranolol should be administered with caution in this setting since it may provoke a bronchial asthmatic attack by blocking bronchodilation produced by endogenous and exogenous catecholamine stimulation of beta-receptors.

Major Surgery

The necessity or desirability of withdrawal of beta-blocking therapy prior to major surgery is controversial. It should be noted, however, that the impaired ability of the heart to respond to reflex adrenergic stimuli in propranolol-treated patients may augment the risks of general anesthesia and surgical procedures.

Propranolol is a competitive inhibitor of beta-receptor agonists, and its effects can be reversed by administration of such agents, e.g., dobutamine or isoproterenol. However, such patients may be subject to protracted severe hypotension.

Diabetes and Hypoglycemia

Beta-adrenergic blockade may prevent the appearance of certain premonitory signs and symptoms (pulse rate and pressure changes) of acute hypoglycemia, especially in labile insulin-dependent diabetics. In these patients, it may be more difficult to adjust the dosage of insulin.

Propranolol therapy, particularly when given to infants and children, diabetic or not, has been associated with hypoglycemia, especially during fasting as in preparation for surgery. Hypoglycemia has been reported in patients taking propranolol after prolonged physical exertion and in patients with renal insufficiency.

Thyrotoxicosis

Beta-adrenergic blockade may mask certain clinical signs of hyperthyroidism. Therefore, abrupt withdrawal of propranolol may be followed by an exacerbation of symptoms of hyperthyroidism, including thyroid storm. Propranolol may change thyroid-function tests, increasing T4 and reverse T3 and decreasing T3.

Wolff-Parkinson-White Syndrome

Beta-adrenergic blockade in patients with Wolf-Parkinson-White Syndrome and tachycardia has been associated with severe bradycardia requiring treatment with a pacemaker. In one case, this result was reported after an initial dose of 5 mg propranolol.

Pheochromocytoma

Blocking only the peripheral dilator (beta) action of epinephrine with propranolol leaves its constrictor (alpha) action unopposed. In the event of hemorrhage or shock, there is a disadvantage in having both beta and alpha blockade since the combination prevents the increase in heart rate and peripheral vasoconstriction needed to maintain blood pressure.

PRECAUTIONS

General

Propranolol should be used with caution in patients with impaired hepatic or renal function. Inderal is not indicated for the treatment of hypertensive emergencies.

Beta-adrenergic receptor blockade can cause reduction of intraocular pressure. Patients should be told that Inderal may interfere with the glaucoma screening test. Withdrawal may lead to a return of increased intraocular pressure.

While taking beta blockers, patients with a history of severe anaphylactic reaction to a variety of allergens may be more reactive to repeated challenge, either accidental, diagnostic, or therapeutic. Such patients may be unresponsive to the usual doses of epinephrine used to treat allergic reaction.

Clinical Laboratory Tests

In patients with hypertension, use of propranolol has been associated with elevated levels of serum potassium, serum transaminases and alkaline phosphatase. In severe heart failure, the use of propranolol has been associated with increases in Blood Urea Nitrogen.

Drug Interactions

Caution should be exercised when Inderal is administered with drugs that have an effect on CYP2D6, 1A2, or 2C19 metabolic pathways. Co-administration of such drugs with propranolol may lead to clinically relevant drug interactions and changes on its efficacy and/or toxicity (see Drug Interactions in PHARMACOKINETICS AND DRUG METABOLISM).

Cardiovascular Drugs

Antiarrhythmics

Propafenone has negative inotropic and beta-blocking properties that can be additive to those of propranolol.

Quinidine increases the concentration of propranolol and produces greater degrees of clinical beta-blockade and may cause postural hypotension.

Amiodarone is an antiarrhythmic agent with negative chronotropic properties that may be additive to those seen with β-blockers such as propranolol.

The clearance of lidocaine is reduced with administration of propranolol. Lidocaine toxicity has been reported following coadministration with propranolol.

Caution should be exercised when administering Inderal with drugs that slow A-V nodal conduction, e.g. digitalis, lidocaine and calcium channel blockers.

Digitalis Glycosides

Both digitalis glycosides and beta-blockers slow atrioventricular conduction and decrease heart rate. Concomitant use can increase the risk of bradycardia.

Calcium Channel Blockers

Caution should be exercised when patients receiving a beta blocker are administered a calcium-channel-blocking drug with negative inotropic and/or chronotropic effects. Both agents may depress myocardial contractility or atrioventricular conduction.

There have been reports of significant bradycardia, heart failure, and cardiovascular collapse with concurrent use of verapamil and beta-blockers.

Co-administration of propranolol and diltiazem in patients with cardiac disease has been associated with bradycardia, hypotension, high-degree heart block, and heart failure.

ACE Inhibitors

When combined with beta-blockers, ACE inhibitors can cause hypotension, particularly in the setting of acute myocardial infarction.

The antihypertensive effects of clonidine may be antagonized by beta-blockers. Inderal should be administered cautiously to patients withdrawing from clonidine.

Alpha Blockers

Prazosin has been associated with prolongation of first dose hypotension in the presence of beta-blockers.

Postural hypotension has been reported in patients taking both beta-blockers and terazosin or doxazosin.

Reserpine

Patients receiving catecholamine-depleting drugs, such as reserpine, should be closely observed for excessive reduction of resting sympathetic nervous activity, which may result in hypotension, marked bradycardia, vertigo, syncopal attacks, or orthostatic hypotension.

Inotropic Agents

Patients on long-term therapy with propranolol may experience uncontrolled hypertension if administered epinephrine as a consequence of unopposed alpha-receptor stimulation. Epinephrine is therefore not indicated in the treatment of propranolol overdose (see OVERDOSAGE).

Isoproterenol and Dobutamine

Propranolol is a competitive inhibitor of beta-receptor agonists, and its effects can be reversed by administration of such agents, e.g., dobutamine or isoproterenol. Also, propranolol may reduce sensitivity to dobutamine stress echocardiography in patients undergoing evaluation for myocardial ischemia.

Non-Cardiovascular Drugs

Nonsteroidal Anti-Inflammatory Drugs

Nonsteroidal anti-inflammatory drugs (NSAIDS) have been reported to blunt the antihypertensive effect of beta-adrenoreceptor blocking agents.

Administration of indomethacin with propranolol may reduce the efficacy of propranolol in reducing blood pressure and heart rate.

Antidepressants

The hypotensive effects of MAO inhibitors or tricyclic antidepressants may be exacerbated when administered with beta-blockers by interfering with the beta blocking activity of propranolol.

Anesthetic Agents

Methoxyflurane and trichloroethylene may depress myocardial contractility when administered with propranolol.

Warfarin

Propranolol when administered with warfarin increases the concentration of warfarin. Prothrombin time, therefore, should be monitored.

Neuroleptic Drugs

Hypotension and cardiac arrest have been reported with the concomitant use of propranolol and haloperidol.

Thyroxine

Thyroxine may result in a lower than expected T3 concentration when used concomitantly with propranolol.

Alcohol

Alcohol, when used concomitantly with propranolol, may increase plasma levels of propranolol.

Carcinogenesis, Mutagenesis, Impairment of Fertility

In dietary administration studies in which mice and rats were treated with propranolol hydrochloride for up to 18 months at doses of up to 150 mg/kg/day, there was no evidence of drug-related tumorigenesis. On a body surface area basis, this dose in the mouse and rat is, respectively, about equal to and about twice the maximum recommended human oral daily dose (MRHD) of 640 mg propranolol hydrochloride. In a study in which both male and female rats were exposed to propranolol hydrochloride in their diets at concentrations of up to 0.05% (about 50 mg/kg body weight and less than the MRHD), from 60 days prior to mating and throughout pregnancy and lactation for two generations, there were no effects on fertility. Based on differing results from Ames Tests performed by different laboratories, there is equivocal evidence for a genotoxic effect of propranolol hydrochloride in bacteria (S. typhimurium strain TA 1538).

Pregnancy: Pregnancy Category C

In a series of reproductive and developmental toxicology studies, propranolol hydrochloride was given to rats by gavage or in the diet throughout pregnancy and lactation. At doses of 150 mg/kg/day, but not at doses of 80 mg/kg/day (equivalent to the MRHD on a body surface area basis), treatment was associated with embryotoxicity (reduced litter size and increased resorption rates) as well as neonatal toxicity (deaths). Propranolol hydrochloride also was administered (in the feed) to rabbits (throughout pregnancy and lactation) at doses as high as 150 mg/kg/day (about 5 times the maximum recommended human oral daily dose). No evidence of embryo or neonatal toxicity was noted.

There are no adequate and well-controlled studies in pregnant women. Intrauterine growth retardation, small placentas, and congenital abnormalities have been reported in neonates whose mothers received propranolol during pregnancy. Neonates whose mothers received propranolol at parturition have exhibited bradycardia, hypoglycemia, and/or respiratory depression. Adequate facilities for monitoring such infants at birth should be available. Inderal should be used during pregnancy only if the potential benefit justifies the potential risk to the fetus.

Nursing Mothers

Propranolol is excreted in human milk. Caution should be exercised when Inderal is administered to a nursing woman.

Pediatric Use

Safety and effectiveness of propranolol in pediatric patients have not been established.

Bronchospasm and congestive heart failure have been reported coincident with the administration of propranolol therapy in pediatric patients.

Geriatric Use

Clinical studies of Inderal did not include sufficient numbers of subjects aged 65 and over to determine whether they respond differently from younger subjects. Other reported clinical experience has not identified differences in responses between the elderly and younger patients. In general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function, and of concomitant disease or other drug therapy.

ADVERSE REACTIONS

The following adverse events were observed and have been reported in patients using propranolol.

Cardiovascular: Bradycardia; congestive heart failure; intensification of AV block; hypotension; paresthesia of hands; thrombocytopenic purpura; arterial insufficiency, usually of the Raynaud type.

Central Nervous System: Light-headedness, mental depression manifested by insomnia, lassitude, weakness, fatigue; catatonia; visual disturbances; hallucinations; vivid dreams; an acute reversible syndrome characterized by disorientation for time and place, short-term memory loss, emotional lability, slightly clouded sensorium, and decreased performance on neuropsychometrics. For immediate-release formulations, fatigue, lethargy, and vivid dreams appear dose-related.

Gastrointestinal: Nausea, vomiting, epigastric distress, abdominal cramping, diarrhea, constipation, mesenteric arterial thrombosis, ischemic colitis.

Allergic: Hypersensitivity reactions, including anaphylactic/anaphylactoid reactions, pharyngitis and agranulocytosis; erythematous rash, fever combined with aching and sore throat; laryngospasm, and respiratory distress.

Respiratory: Bronchospasm.

Hematologic: Agranulocytosis, nonthrombocytopenic purpura, thrombocytopenic purpura.

Autoimmune: Systemic lupus erythematosus (SLE).

Skin and mucous membranes: Stevens-Johnson Syndrome, toxic epidermal necrolysis, dry eyes, exfoliative dermatitis, erythema multiforme, urticaria, alopecia, SLE-like reactions, and psoriasiform rashes. Oculomucocutaneous syndrome involving the skin, serous membranes and conjunctivae reported for a beta blocker (practolol) have not been associated with propranolol.

Genitourinary: Male impotence; Peyronie's disease.

OVERDOSAGE

Propranolol is not significantly dialyzable. In the event of overdosage or exaggerated response, the following measures should be employed:

General: If ingestion is or may have been recent, evacuate gastric contents, taking care to prevent pulmonary aspiration.

Supportive Therapy: Hypotension and bradycardia have been reported following propranolol overdose and should be treated appropriately. Glucagon can exert potent inotropic and chronotropic effects and may be particularly useful for the treatment of hypotension or depressed myocardial function after a propranolol overdose. Glucagon should be administered as 50-150 mcg/kg intravenously followed by continuous drip of 1-5 mg/hour for positive chronotropic effect. Isoproterenol, dopamine or phosphodiesterase inhibitors may also be useful. Epinephrine, however, may provoke uncontrolled hypertension. Bradycardia can be treated with atropine or isoproterenol. Serious bradycardia may require temporary cardiac pacing.

The electrocardiogram, pulse, blood pressure, neurobehavioral status and intake and output balance must be monitored. Isoproterenol and aminophylline may be used for bronchospasm.

DOSAGE AND ADMINISTRATION

General

Because of the variable bioavailability of propranolol, the dose should be individualized based on response.

Hypertension

The usual initial dosage is 40 mg Inderal twice daily, whether used alone or added to a diuretic. Dosage may be increased gradually until adequate blood pressure control is achieved. The usual maintenance dosage is 120 mg to 240 mg per day. In some instances a dosage of 640 mg a day may be required. The time needed for full antihypertensive response to a given dosage is variable and may range from a few days to several weeks.

While twice-daily dosing is effective and can maintain a reduction in blood pressure throughout the day, some patients, especially when lower doses are used, may experience a modest rise in blood pressure toward the end of the 12-hour dosing interval. This can be evaluated by measuring blood pressure near the end of the dosing interval to determine whether satisfactory control is being maintained throughout the day. If control is not adequate, a larger dose, or 3‑times‑daily therapy may achieve better control.

Angina Pectoris

Total daily doses of 80 mg to 320 mg Inderal, when administered orally, twice a day, three times a day, or four times a day, have been shown to increase exercise tolerance and to reduce ischemic changes in the ECG. If treatment is to be discontinued, reduce dosage gradually over a period of several weeks. (See WARNINGS.)

Atrial Fibrillation

The recommended dose is 10 mg to 30 mg Inderal three or four times daily before meals and at bedtime.

Myocardial Infarction

In the Beta-Blocker Heart Attack Trial (BHAT), the initial dose was 40 mg t.i.d., with titration after 1 month to 60 mg to 80 mg t.i.d. as tolerated. The recommended daily dosage is 180 mg to 240 mg Inderal per day in divided doses. Although a t.i.d. regimen was used in the BHAT and a q.i.d. regimen in the Norwegian Multicenter Trial, there is a reasonable basis for the use of either a t.i.d. or b.i.d. regimen (see PHARMACODYNAMICS AND CLINICAL EFFECTS). The effectiveness and safety of daily dosages greater than 240 mg for prevention of cardiac mortality have not been established. However, higher dosages may be needed to effectively treat coexisting diseases such as angina or hypertension (see above).

Migraine

The initial dose is 80 mg Inderal daily in divided doses. The usual effective dose range is 160 mg to 240 mg per day. The dosage may be increased gradually to achieve optimum migraine prophylaxis. If a satisfactory response is not obtained within four to six weeks after reaching the maximum dose, Inderal therapy should be discontinued. It may be advisable to withdraw the drug gradually over a period of several weeks.

Essential Tremor

The initial dosage is 40 mg Inderal twice daily. Optimum reduction of essential tremor is usually achieved with a dose of 120 mg per day. Occasionally, it may be necessary to administer 240 mg to 320 mg per day.

Hypertrophic Subaortic Stenosis

The usual dosage is 20 mg to 40 mg Inderal three or four times daily before meals and at bedtime.

Pheochromocytoma

The usual dosage is 60 mg Inderal daily in divided doses for three days prior to surgery as adjunctive therapy to alpha-adrenergic blockade. For the management of inoperable tumors, the usual dosage is 30 mg daily in divided doses as adjunctive therapy to alpha-adrenergic blockade.

HOW SUPPLIED

Inderal®
(propranolol hydrochloride)

Tablets

INDERAL 10—Each hexagonal-shaped, orange, scored tablet, embossed with an “I” and imprinted with “INDERAL 10,” contains 10 mg propranolol hydrochloride, in bottles of 100 (NDC 0046-0421-81) and 5,000 (NDC 0046-0421-95).

Store at controlled room temperature 20° to 25° C (68° to 77° F); excursions permitted to 15° to 30° C (59° to 86° F).

Dispense in a well-closed container as defined in the USP.

INDERAL 20—Each hexagonal-shaped, blue, scored tablet, embossed with an “I” and imprinted with “INDERAL 20,” contains 20 mg propranolol hydrochloride, in bottles of 100 (NDC 0046-0422-81).

Store at controlled room temperature 20° to 25° C (68° to 77° F); excursions permitted to 15° to 30° C (59° to 86° F).

Dispense in a well-closed, light-resistant container as defined in the USP.

Protect from light.

Use carton to protect contents from light.

INDERAL 40—Each hexagonal-shaped, green, scored tablet, embossed with an “I” and imprinted with “INDERAL 40,” contains 40 mg propranolol hydrochloride, in bottles of 100 (NDC 0046-0424-81) and 5,000 (NDC 0046-0424-95).

Store at controlled room temperature 20° to 25° C (68° to 77° F); excursions permitted to 15° to 30° C (59° to 86° F).

Dispense in a well-closed, light-resistant container as defined in the USP.

Protect from light.

Use carton to protect contents from light.

INDERAL 60—Each hexagonal-shaped, pink, scored tablet, embossed with an “I” and imprinted with “INDERAL 60,” contains 60 mg propranolol hydrochloride, in bottles of 100 (NDC 0046-0426-81).

Store at controlled room temperature 20° to 25° C (68° to 77° F); excursions permitted to 15° to 30° C (59° to 86° F).

Dispense in a well-closed container as defined in the USP.

INDERAL 80—Each hexagonal-shaped, yellow, scored tablet, embossed with an “I” and imprinted with “INDERAL 80,” contains 80 mg propranolol hydrochloride, in bottles of 100 (NDC 0046-0428-81).

Store at 20° to 25° C (68° to 77° F); excursions permitted to 15° to 30° C (59° to 86° F). [See USP Controlled Room Temperature]
-------------------------------------------------------
产地国家: 意大利
原产地英文商品名:
Inderal 40mg 30 Tabs
原产地英文药品名:
PROPRANOLOL HCL
中文参考商品译名:
心得安 40毫克/片 30片/盒
中文参考药品译名:
盐酸普萘洛尔片
生产厂家中文参考译名:
阿斯特捷利康制药
生产厂家英文名:
ASTRAZENECA SpA

-------------------------------------------------------
产地国家: 意大利
原产地英文商品名:
Inderal 40mg 50 Tabs
原产地英文药品名:
PROPRANOLOL HCL
中文参考商品译名:
心得安 40毫克/片 50片/盒
中文参考药品译名:
盐酸普萘洛尔片
生产厂家中文参考译名:
阿斯特捷利康制药
生产厂家英文名:
ASTRAZENECA SpA


-------------------------------------------------------
产地国家: 意大利
原产地英文商品名:
Inderal 40mg 100Tabs
原产地英文药品名:
PROPRANOLOL HCL
中文参考商品译名:
心得安 40毫克/片 100片/盒
中文参考药品译名:
盐酸普萘洛尔片
生产厂家中文参考译名:
阿斯特捷利康制药
生产厂家英文名:
ASTRAZENECA SpA

责任编辑:admin


相关文章
onbrez inhalation capsules(茚达特罗马来酸长效吸入剂)
维拉帕米缓释片|CALAN SR(VERAPAMIL HCL)
盐酸普萘洛尔胶囊Inderal RP(PROPRANOLOL HC)
维拉帕米片Veramex(Verapamil)
酒石酸美托洛尔注射液BETALOC(METOPROLOL TARTRATE)
酒石酸美托洛尔片TOPROL-XL(METOPROLOL SUSTAINED)
VERAPAMIL SR(维拉帕米24小时缓释胶囊(VERELAN仿制药))
富马酸比索洛尔片Maintate(Bisoprolol Fumarate)
盐酸地尔硫卓胶囊TIAZAC SA(DILTIAZEM HCL)
心得安(普萘洛尔片)Inderal(Propranolol Tablets)
 

最新文章

更多

· 依度沙班片|Lixiana(ed...
· DuoPlavin(阿司匹林/氯...
· Argatroban Injection(...
· Plavix(Clopidogrel Bi...
· 替卡格雷片BRILIQUE(tic...
· DOBUPUM Injection syri...
· Prestalia(Perindopril ...
· Repatha(evolocumab)溶液...
· PRALUENT(alirocumab in...
· ENTRESTO tablets(奥帕...

推荐文章

更多

· 依度沙班片|Lixiana(ed...
· DuoPlavin(阿司匹林/氯...
· Argatroban Injection(...
· Plavix(Clopidogrel Bi...
· 替卡格雷片BRILIQUE(tic...
· DOBUPUM Injection syri...
· Prestalia(Perindopril ...
· Repatha(evolocumab)溶液...
· PRALUENT(alirocumab in...
· ENTRESTO tablets(奥帕...

热点文章

更多

· Plavix(Clopidogrel Bi...
· Argatroban Injection(...
· DuoPlavin(阿司匹林/氯...
· 依度沙班片|Lixiana(ed...