部份中文洛赛克处方资料(仅供参考)
奥美拉唑;omeprazole
洛赛克静脉注射剂:一支瓿
药理作用
洛赛克藉由高选择性的作用机制来降低胃酸的分泌,它对胃壁细胞上的酵素H+,K+ -ATPase(氢离子泵)会产生与剂量大小有关的抑制作用。由于此一特殊机制,抑制形成胃酸的最后步骤,因此可有效地抑制基础胃酸及因刺激而产生的胃酸分泌。奥美拉唑对胆碱受体及组织胺受体不产生任何作用,而且除了已知对酸分泌的作用外,临床上并无其他明显的药物动力学作用。本药作用迅速,且一天一次的剂量对胃酸的分泌可达到可逆性的控制。
制造商:阿斯利康 Astrazeneca
Losec 40mg powder and solvent for solution for injection
Losec I.V. Injection 40mg
1. Name of the medicinal product
Losec 40 mg powder and solvent for solution for injection
2. Qualitative and quantitative composition
Each vial of powder for solution for injection contains omeprazole sodium 42.6 mg, equivalent to omeprazole 40 mg. After reconstitution, 1 ml contains omeprazole sodium 4.26 mg, equivalent to omeprazole 4 mg.
For a full list of excipients, see section 6.1.
3. Pharmaceutical form
Powder and solvent for solution for injection (Powder for injection; and Solvent for injection)
pH 8.8 to 9.2
4. Clinical particulars
4.1 Therapeutic indications
Losec for intravenous use is indicated as an alternative to oral therapy for the following indications:
Adults
• Treatment of duodenal ulcers
• Prevention of relapse of duodenal ulcers
• Treatment of gastric ulcers
• Prevention of relapse of gastric ulcers
• In combination with appropriate antibiotics, Helicobacter pylori (H. pylori) eradication in peptic ulcer disease
• Treatment of NSAID-associated gastric and duodenal ulcers
• Prevention of NSAID-associated gastric and duodenal ulcers in patients at risk
• Treatment of reflux oesophagitis
• Long-term management of patients with healed reflux oesophagitis
• Treatment of symptomatic gastro-oesophageal reflux disease
• Treatment of Zollinger-Ellison syndrome
4.2 Posology and method of administration
Adults
Alternative to oral therapy
In patients where the use of oral medicinal products is inappropriate, Losec IV 40 mg once daily is recommended. In patients with Zollinger-Ellison Syndrome the recommended initial dose of Losec given intravenously is 60 mg daily. Higher daily doses may be required and the dose should be adjusted individually. When doses exceed 60 mg daily, the dose should be divided and given twice daily.
Losec solution for injection must be given only as an intravenous injection and it must not be added to infusion solutions. After reconstitution the injection should be given slowly over a period of at least 2.5 minutes at a maximum rate of 4 ml per minute. For instructions on reconstitution of the product before administration, see section 6.6.
Special populations
Patients with impaired renal function
Dose adjustment is not needed in patients with impaired renal function. (see section 5.2).
Patients with impaired hepatic function
In patients with impaired hepatic function a daily dose of 10-20 mg may be sufficient (see section 5.2).
Older people
Dose adjustment is not needed in the elderly (see section 5.2).
Paediatric population
There is limited experience with Losec for intravenous use in children.
4.3 Contraindications
Hypersensitivity to omeprazole, substituted benzimidazoles or to any of the excipients listed in section 6.1.
Omeprazole like other proton pump inhibitors (PPIs) should not be used concomitantly with nelfinavir (see section 4.5).
4.4 Special warnings and precautions for use
In the presence of any alarm symptoms (eg, significant unintentional weight loss, recurrent vomiting, dysphagia, haematemesis or melena) and when gastric ulcer is suspected or present, malignancy should be excluded, as treatment may alleviate symptoms and delay diagnosis.
Co-administration of atazanavir with proton pump inhibitors is not recommended (see section 4.5). If the combination of atazanavir with a proton pump inhibitor is judged unavoidable, close clinical monitoring (e.g virus load) is recommended in combination with an increase in the dose of atazanavir to 400 mg with 100 mg of ritonavir; omeprazole 20 mg should not be exceeded.
Omeprazole, as all acid-blocking medicines, may reduce the absorption of vitamin B12 (cyanocobalamin) due to hypo- or achlorhydria. This should be considered in patients with reduced body stores or risk factors for reduced vitamin B12 absorption on long-term therapy.
Omeprazole is a CYP2C19 inhibitor. When starting or ending treatment with omeprazole, the potential for interactions with drugs metabolised through CYP2C19 should be considered. An interaction is observed between clopidogrel and omeprazole (see section 4.5). The clinical relevance of this interaction is uncertain. As a precaution, concomitant use of omeprazole and clopidogrel should be discouraged.
Treatment with proton pump inhibitors may lead to slightly increased risk of gastrointestinal infections such as Salmonella and Campylobacter (see section 5.1).
Severe hypomagnesaemia has been reported in patients treated with proton pump inhibitors (PPIs) like omeprazole for at least three months, and in most cases for a year. Serious manifestations of hypomagnesaemia such as fatigue, tetany, delirium, convulsions, dizziness and ventricular arrhythmia can occur but they may begin insidiously and be overlooked. In most affected patients, hypomagnesaemia improved after magnesium replacement and discontinuation of the PPI.
For patients expected to be on prolonged treatment or who take PPIs with digoxin or drugs that may cause hypomagnesaemia (e.g. diuretics), healthcare professionals should consider measuring magnesium levels before starting PPI treatment and periodically during treatment.
Proto pump inhibitors, especially if used in high doses and over long durations (>1 year), may modestly increase the risk of hip, wrist and spine fracture, predominantly in the elderly or in presence of other recognised risk factors. Observational studies suggest that proton pump inhibitors may increase the overall risk of fracture by 10-40%. Some of this increase may be due to other risk factors. Patients at risk of osteoporosis should receive care according to current clinical guidelines and they should have an adequate intake of vitamin D and calcium.
Interference with laboratory tests
Increased Chromogranin A (CgA) level may interfere with investigations for neuroendocrine tumours. To avoid this interference, omeprazole treatment should be stopped for at least 5 days before CgA measurements (see section 5.1).
As in all long-term treatments, especially when exceeding a treatment period of 1 year, patients should be kept under regular surveillance.
4.5 Interaction with other medicinal products and other forms of interaction
Effects of omeprazole on the pharmacokinetics of other active substances
Active substances with pH dependent absorption
The decreased intragastric acidity during treatment with omeprazole might increase or decrease the absorption of active substances with a gastric pH dependent absorption.
Nelfinavir, atazanavir
The plasma levels of nelfinavir and atazanavir are decreased in case of co-administration with omeprazole.
Concomitant administration of omeprazole with nelfinavir is contraindicated (see section 4.3). Co-administration of omeprazole (40 mg once daily) reduced mean nelvinavir exposure by ca. 40% and the mean exposure of the pharmacologically active metabolite M8 was reduced by ca. 75-90%. The interaction may also involve CYP2C19 inhibition.
Concomitant administration of omeprazole with atazanavir is not recommended (see section 4.4). Concomitant administration of omeprazole (40 mg once daily) and atazanavir 300 mg/ritonavir 100 mg to healthy volunteers resulted in a 75% decrease of the atazanavir exposure. Increasing the atazanavir dose to 400 mg did not compensate for the impact of omeprazole on atazanavir exposure. The co-administration of omeprazole (20 mg once daily) with atazanavir 400 mg/ritonavir 100 mg to healthy volunteers resulted in a decrease of approximately 30% in the atazanavir exposure as compared to atazanavir 300 mg/ritonavir 100 mg once daily.
Digoxin
Concomitant treatment with omeprazole (20 mg daily) and digoxin in healthy subjects increased the bioavailability of digoxin by 10%. Digoxin toxicity has been rarely reported. However caution should be exercised when omeprazole is given at high doses in elderly patients. Therapeutic drug monitoring of digoxin should be then be reinforced.
Clopidogrel
Results from studies in healthy subjects have shown a pharmacokinetic (PK)/pharmacodynamic (PD) interaction between clopidogrel (300 mg loading dose/75 mg daily maintenance dose) and omeprazole (80 mg p.o. daily) resulting in a decreased exposure to the active metabolite of clopidogrel by an average of 46% and a decreased maximum inhibition of (ADP induced) platelet aggregation by an average of 16%.
Inconsistent data on the clinical implications of a PK/PD interaction of omeprazole in terms of major cardiovascular events have been reported from both observational and clinical studies. As a precaution, concomitant use of omeprazole and clopidogrel should be discouraged (see section 4.4).
Other active substances
The absorption of posaconazole, erlotinib, ketoconazole and itraconazole is significantly reduced and thus clinical efficacy may be impaired. For posaconazole and erlotinib concomitant use should be avoided.
Active substances metabolised by CYP2C19
Omeprazole is a moderate inhibitor of CYP2C19, the major omeprazole metabolising enzyme. Thus, the metabolism of concomitant active substances also metabolised by CYP2C19, may be decreased and the systemic exposure to these substances increased. Examples of such drugs are R-warfarin and other vitamin K antagonists, cilostazol, diazepam and phenytoin.
Cilostazol
Omeprazole, given in doses of 40 mg to healthy subjects in a cross-over study, increased Cmax and AUC for cilostazol by 18% and 26% respectively, and one of its active metabolites by 29% and 69% respectively.
Phenytoin
Monitoring phenytoin plasma concentration is recommended during the first two weeks after initiating omeprazole treatment and, if a phenytoin dose adjustment is made, monitoring and a further dose adjustment should occur upon ending omeprazole treatment.
Unknown mechanism
Saquinavir
Concomitant administration of omeprazole with saquinavir/ritonavir resulted in increased plasma levels up to approximately 70% for saquinavir associated with good tolerability in HIV-infected patients.
Tacrolimus
Concomitant administration of omeprazole has been reported to increase the serum levels of tacrolimus. A reinforced monitoring of tacrolimus concentrations as well as renal function (creatinine clearance) should be performed, and dosage of tacrolimus adjusted if needed.
Methotrexate
When given together with proton-pump inhibitors, methotrexate levels have been reported to increase in some patients. In high-dose methotrexate administration a temporary withdrawal of omeprazole may need to be considered.
Effects of other active substances on the pharmacokinetics of omeprazole
Inhibitors of CYP2C19 and/or CYP3A4
Since omeprazole is metabolised by CYP2C19 and CYP3A4, active substances known to inhibit CYP2C19 or CYP3A4 (such as clarithromycin and voriconazole) may lead to increased omeprazole serum levels by decreasing omeprazole's rate of metabolism. Concomitant voriconazole treatment resulted in more than doubling of the omeprazole exposure. As high doses of omeprazole have been well-tolerated adjustment of the omeprazole dose is not generally required. However, dose adjustment should be considered in patients with severe hepatic impairment and if long-term treatment is indicated.
Inducers of CYP2C19 and/or CYP3A4
Active substances known to induce CYP2C19 or CYP3A4 or both (such as rifampicin and St John's wort) may lead to decreased omeprazole serum levels by increasing omeprazole's rate of metabolism.
4.6 Fertility, pregnancy and lactation
Pregnancy
Results from three prospective epidemiological studies (more than 1000 exposed outcomes) indicate no adverse effects of omeprazole on pregnancy or on the health of the foetus/newborn child. Omeprazole can be used during pregnancy.
Breastfeeding
Omeprazole is excreted in breast milk but is not likely to influence the child when therapeutic doses are used.
Fertility
Animal studies with the racemic mixture omeprazole, do not indicate effects with respect to fertility.
4.7 Effects on ability to drive and use machines
Losec is not likely to affect the ability to drive or use machines. Adverse drug reactions such as dizziness and visual disturbances may occur (see section 4.8). If affected, patients should not drive or operate machinery.
4.8 Undesirable effects
Summary of the safety profile
The most common side effects (1-10% of patients) are headache, abdominal pain, constipation, diarrhoea, flatulence and nausea/vomiting.
Tabulated list of adverse reactions
The following adverse drug reactions have been identified or suspected in the clinical trials programme for omeprazole and post-marketing. None was found to be dose-related.
Adverse reactions listed below are classified according to frequency and System Organ Class (SOC). Frequency categories are defined according to the following convention: Very common (≥ 1/10), Common (≥ 1/100 to < 1/10), Uncommon (≥ 1/1,000 to < 1/100), Rare (≥ 1/10,000 to < 1/1,000), Very rare (< 1/10,000), Not known (cannot be estimated from the available data).
SOC/frequency |
Adverse reaction |
Blood and lymphatic system disorders | |
Rare: |
Leukopenia, thrombocytopenia |
Very rare: |
Agranulocytosis, pancytopenia |
Immune system disorders | |
Rare: |
Hypersensitivity reactions e.g. fever, angioedema and anaphylactic reaction/shock |
Metabolism and nutrition disorders | |
Rare: |
Hyponatraemia |
Not known: |
Hypomagnesaemia; severe hypomagnesaemia may result in hypocalcaemia. Hypomagnesaemia may also be associated with hypokalaemia. |
Psychiatric disorders | |
Uncommon: |
Insomnia |
Rare: |
Agitation, confusion, depression |
Very rare: |
Aggression, hallucinations |
Nervous system disorders | |
Common: |
Headache |
Uncommon: |
Dizziness, paraesthesia, somnolence |
Rare: |
Taste disturbance |
Eye disorders | |
Rare: |
Blurred vision |
Ear and labyrinth disorders | |
Uncommon: |
Vertigo |
Respiratory, thoracic and mediastinal disorders | |
Rare: |
Bronchospasm |
Gastrointestinal disorders | |
Common: |
Abdominal pain, constipation, diarrhoea, flatulence, nausea/vomiting |
Rare: |
Dry mouth, stomatitis, gastrointestinal candidiasis |
Not known: |
Microscopic colitis |
Hepatobiliary disorders | |
Uncommon: |
Increased liver enzymes |
Rare: |
Hepatitis with or without jaundice |
Very rare: |
Hepatic failure, encephalopathy in patients with pre-existing liver disease |
Skin and subcutaneous tissue disorders | |
Uncommon: |
Dermatitis, pruritus, rash, urticaria |
Rare: |
Alopecia, photosensitivity |
Very rare: |
Erythema multiforme, Stevens-Johnson syndrome, toxic epidermal necrolysis (TEN) |
Musculoskeletal and connective tissue disorders | |
Uncommon: |
Fracture of the hip, wrist or spine |
Rare: |
Arthralgia, myalgia |
Very rare: |
Muscular weakness |
Renal and urinary disorders | |
Rare: |
Interstitial nephritis |
Reproductive system and breast disorders | |
Very rare: |
Gynaecomastia |
General disorders and administration site conditions | |
Uncommon: |
Malaise, peripheral oedema |
Rare: |
Increased sweating |
Reporting of suspected adverse reactions
Reporting suspected adverse reactions after authorisation of the medicinal product is important. It allows continued monitoring of the benefit/risk balance of the medicinal product. Healthcare professionals are asked to report any suspected adverse reactions via the Yellow Card Scheme website: www.mhra.gov.uk/yellowcard
4.9 Overdose
There is limited information available on the effects of overdoses of omeprazole in humans. In the literature, doses of up to 560 mg have been described, and occasional reports have been received when single oral doses have reached up to 2,400 mg omeprazole (120 times the usual recommended clinical dose). Nausea, vomiting, dizziness, abdominal pain, diarrhoea and headache have been reported. Also apathy, depression and confusion have been described in single cases.
The symptoms described have been transient, and no serious outcome has been reported. The rate of elimination was unchanged (first order kinetics) with increased doses. Treatment, if needed, is symptomatic.
Intravenous doses of up to 270 mg on a single day and up to 650 mg over a three-day period have been given in clinical trials without any dose-related adverse reactions.
5. Pharmacological properties
5.1 Pharmacodynamic properties
Pharmacotherapeutic group: Drugs for acid-related disorders, proton pump inhibitors, ATC code: A02BC01
Mechanism of action
Omeprazole, a racemic mixture of two enantiomers reduces gastric acid secretion through a highly targeted mechanism of action. It is a specific inhibitor of the acid pump in the parietal cell. It is rapidly acting and provides control through reversible inhibition of gastric acid secretion with once daily dosing.
Omeprazole is a weak base and is concentrated and converted to the active form in the highly acidic environment of the intracellular canaliculi within the parietal cell, where it inhibits the enzyme H+,K+-ATPase - the acid pump. This effect on the final step of the gastric acid formation process is dose-dependent and provides for highly effective inhibition of both basal acid secretion and stimulated acid secretion, irrespective of stimulus.
Pharmacodynamic effects
All pharmacodynamic effects observed can be explained by the effect of omeprazole on acid secretion.
Effect on gastric acid secretion
Intravenous omeprazole produces a dose dependent inhibition of gastric acid secretion in humans. In order to immediately achieve a similar reduction of intragastric acidity as after repeated dosing with 20 mg orally, a first dose of 40 mg intravenously is recommended. This results in an immediate decrease in intragastric acidity and a mean decrease over 24 hours of approximately 90% for both iv injection and iv infusion.
The inhibition of acid secretion is related to the area under the plasma concentration-time curve (AUC) of omeprazole and not to the actual plasma concentration at a given time.
No tachyphylaxis has been observed during treatment with omeprazole.
Effect on H. pylori
H. pylori is associated with peptic ulcer disease, including duodenal and gastric ulcer disease. H. pylori is a major factor in the development of gastritis. H. pylori together with gastric acid are major factors in the development of peptic ulcer disease. H. pylori is a major factor in the development of atrophic gastritis which is associated with an increased risk of developing gastric cancer.
Eradication of H. pylori with omeprazole and antimicrobials is associated with high rates of healing and long-term remission of peptic ulcers.
Other effects related to acid inhibition
During long-term treatment gastric glandular cysts have been reported in a somewhat increased frequency. These changes are a physiological consequence of pronounced inhibition of acid secretion, are benign and appear to be reversible.
Decreased gastric acidity due to any means including proton pump inhibitors, increases gastric counts of bacteria normally present in the gastrointestinal tract. Treatment with acid-reducing drugs may lead to slightly increased risk of gastrointestinal infections such as Salmonella and Campylobacter.
During treatment with antisecretory medicinal products serum gastrin increases in response to the decreased acid secretion. Also CgA increases due to decreased gastric acidity. The increased CgA level may interfere with investigations for neuroendocrine tumours. Literature reports indicate that proton pump inhibitor treatment should be stopped at least 5 days before CgA measurement. If CgA and gastrin levels have not normalised after 5 days, measurements should be repeated 14 days after cessation of omeprazole treatment.
An increased number of ECL cells possibly related to the increased serum gastrin levels, have been observed in some patients (both children and adults) during long term treatment with omeprazole. The findings are considered to be of no clinical significance.
5.2 Pharmacokinetic properties
Distribution
The apparent volume of distribution in healthy subjects is approximately 0.3 l/kg body weight. Omeprazole is 97% plasma protein bound.
Biotransformation
Omeprazole is completely metabolised by the cytochrome P450 system (CYP). The major part of its metabolism is dependent on the polymorphically expressed CYP2C19, responsible for the formation of hydroxyomeprazole, the major metabolite in plasma. The remaining part is dependent on another specific isoform, CYP3A4, responsible for the formation of omeprazole sulfone. As a consequence of high affinity of omeprazole to CYP2C19, there is a potential for competitive inhibition and metabolic drug-drug interactions with other substrates for CYP2C19. However, due to low affinity to CYP3A4, omeprazole has no potential to inhibit the metabolism of other CYP3A4 substrates. In addition, omeprazole lacks an inhibitory effect on the main CYP enzymes.
Approximately 3% of the Caucasian population and 15-20% of Asian populations lack a functional CYP2C19 enzyme and are called poor metabolisers. In such individuals the metabolism of omeprazole is probably mainly catalysed by CYP3A4. After repeated once-daily administration of 20 mg omeprazole, the mean AUC was 5 to 10 times higher in poor metabolisers than in subjects having a functional CYP2C19 enzyme (extensive metabolisers). Mean peak plasma concentrations were also higher, by 3 to 5 times. These findings have no implications for the posology of omeprazole.
Elimination
Total plasma clearance is about 30–40 l/h after a single dose. The plasma elimination half-life of omeprazole is usually shorter than one hour both after single and repeated once-daily dosing. Omeprazole is completely eliminated from plasma between doses. Almost 80% of a dose of omeprazole is excreted as metabolites in the urine, the remainder in the faeces, primarily originating from bile secretion.
Linearity/non-linearity
The AUC of omeprazole increases with repeated administration due to a decrease of systemic clearance probably caused by an inhibition of the CYP2C19 enzyme by omeprazole and/or its metabolites (e.g. the sulfone).
No metabolite has been found to have any effect on gastric acid secretion.
Special populations
Hepatic impairment
The metabolism of omeprazole in patients with liver dysfunction is impaired, resulting in an increased AUC. Omeprazole has not shown any tendency to accumulate with once-daily dosing.
Renal impairment
The pharmacokinetics of omeprazole, including systemic bioavailability and elimination rate, are unchanged in patients with reduced renal function.
Older people
The metabolism rate of omeprazole is somewhat reduced in elderly subjects (75-79 years of age).
5.3 Preclinical safety data
Gastric ECL-cell hyperplasia and carcinoids, have been observed in life-long studies in rats treated with omeprazole. These changes are the result of sustained hypergastrinaemia secondary to acid inhibition. Similar findings have been made after treatment with H2-receptor antagonists, proton pump inhibitors and after partial fundectomy. Thus, these changes are not from a direct effect of any individual active substance.
6. Pharmaceutical particulars
6.1 List of excipients
Vial of active substance
Sodium hydroxide (for pH adjustment)
Ampoule of solvent
Citric acid monohydrate (for pH adjustment),
Macrogol 400,
Water for injections
6.2 Incompatibilities
This medicinal product should not be mixed with other medicinal products than those mentioned in section 6.6.
6.3 Shelf life
Unopened packs: 2 years.
Reconstituted solution:
Chemical and physical in-use stability has been demonstrated for 4 hours at 25oC after reconstitution.
From a microbiological point of view, the product should be used immediately unless it has been reconstituted under controlled and validated aseptic conditions.
6.4 Special precautions for storage
Do not store above 25°C.
Keep the containers in the outer carton in order to protect from light. Vials can however be stored exposed to normal indoor light out side the box for up to 24 hours.
For storage conditions of the reconstituted medicinal product, see section 6.3.
6.5 Nature and contents of container
Combination pack (I+II):
I: Dry substance in a 10 ml vial made of colourless borosilicate glass, type I. Stopper made of bromobutyl rubber, cap made of aluminium and a plastic polypropylene lid.
II: 10 ml solvent in an ampoule (colourless borosilicate glass).
Pack sizes: 1x40 mg (I+II), 5x40 mg (I+II) and 10x40 mg (I+II).
Not all pack sizes may be marketed.
6.6 Special precautions for disposal and other handling
Losec solution for injection is obtained by dissolving the freeze-dried substance in the accompanying solvent. No other solvent should be used.
The stability of omeprazole is influenced by the pH of the solution for injection, which is why no other solvents or quantities should be used for dilution. Improperly prepared solutions can be identified by their yellow to brown discolouration and must not be used. Use only clear, colourless or pale yellowish-brown solutions.
Preparation
NOTE: Steps 1 to 5 must be performed in immediate sequence:
1. With a syringe draw all of the solvent from the ampoule (10 ml).
2. Add approximately 5 ml of the solvent to the vial with freeze-dried omeprazole.
3. Withdraw as much air as possible from the vial back into the syringe. This will make it easier to add the remaining solvent.
4. Add the remaining solvent into the vial, make sure the syringe is empty.
5. Rotate and shake the vial to ensure all the freeze-dried omeprazole has dissolved.
Losec solution for injection must be given only as an intravenous injection and it must not be added to infusion solutions. After reconstitution the injection should be given slowly over a period of at least 2.5 minutes at a maximum rate of 4 ml per minute.
Any unused product or waste material should be disposed of in accordance with local requirements.
7. Marketing authorisation holder
AstraZeneca UK Limited
600 Capability Green
Luton LU1 3LU
United Kingdom
8. Marketing authorisation number(s)
PL17901/0135
9. Date of first authorisation/renewal of the authorisation
18th June 2002
10. Date of revision of the text
27th August 2014